Getting Started

This is a brief document designed to quickly get you started setting up your valve manifold with an integrated Numatics' G2-2 DeviceLogix communication node.

1) Initial Unpacking and Inspection

- 1) Examine exterior of package for signs of damage. Report any damage to shipping carrier.
- 2) Remove wrapped manifold assembly from box.
 - a) Remove manifold assembly from anti-static packaging
 - b) Retain documentation for installation and configuration
- 3) Examine manifold assembly for any shipping damage such as:
 - a) Bent pins or connectors
 - b) Report any damage to shipping carrier immediately
- 4) Examine manifold assembly for proper ordered configuration. (Valves, I/O, Protocol, etc.)

2) G2-2 Introduction

Below is an example of a 2012 series valve manifold. This fieldbus manifold series is capable of addressing a total of 224 I/O. The manifold can be viewed as having two sections to it, the *Valve Side* and the *Discrete I/O Side*. The *Valve Side* supports a maximum of 32 solenoid coils and the *Discrete I/O Side* supports a maximum of 6 modules totaling 192 Outputs, 96 Inputs, or various combinations if used as a DeviceNet node. When being used as a DeviceLogix node the *Discrete I/O Side* is capable of 48 bindable outputs and 96 bindable inputs. The communication module has two connectors: a 5-pin communication connector and a 4-pin power connector. Pin-outs for these, along with I/O connectors, are labeled on the side of the respective modules.

3) MCM - Manual Configuration Module (Optional)

All DIP switches shown in the "OFF" position

The MCM is the module that allows the user to manually set baud rate, MAC ID and other user definable options, without the need for software configuration. <u>If software configuration is preferred, this module is not necessary</u>. The MCM consists of two DIP switch sets (SW1 and SW2) and two rotary switches (SW3 and SW4).

MCM Module Part Numbers

Description	Part Number
Complete Module	239-1384
Replacement Board	256-684

MCM Settings

DIP Switch Settings (SW1)

Baud Rate:

SW1-1	SW1-2	Kbaud
Off*	Off*	125 *
Off	On	250
On	Off	500
On	On	500

Autobaud:

Switch	Setting	Description
SW1-4	Off*	Autobaud Enabled (baud rate configures automatically for 125Kbps, 250 Kbps, and 500 Kbps)
SW1-4	On	Autobaud Disabled (set the baud rate manually either through switches or software)

Manual or Software Configuration:

Switch	Setting	Description			
SW1-5	Off	MCM Disabled - Ignore MCM Settings (Software Configured)			
SW1-5	On*	MCM Enabled - Use MCM Settings (Manually Configured)			

DIP Switch Settings (SW2) - No Function

Rotary Switch Settings (SW3 and SW4)

MAC ID (Network Address):

Switch	Description
SW3	Sets the Ones Digits
SW4	Sets the Tens Digits

*Factory Default Settings

Address is set to a default setting of 63 prior to shipment. Rotary switch settings over 63, default to 63

DIP and rotary switch settings do not take effect until power is cycled (turned OFF and ON).

4) Self-Test Mode

An internal diagnostic tool can also be enabled using the optional MCM module. This tool allows the user to confirm that all of the Inputs and Outputs on the manifold are fully functional without needing a network connection or controller. There are two test modes that the user can choose using SW2-8. The "Output" test mode tests all the outputs by sequentially turning them ON one at a time. The "Input/Output" test mode tests the inputs by causing all of the outputs to toggle between even and odd values when any input is made.

To use the Self-Test Mode, the user must first set some initial conditions using the MCM module. Follow these steps to obtain the needed initial condition settings. Remember to remove power from the manifold before making changes to the MCM when setting these initial conditions.

1) Disconnect power and air from the manifold!

- 2) Record current MCM settings.
- 3) Set the rotary switches to 99 (SW3 and SW4).
- 4) Make sure that SW1-5, SW2-1, and SW2-7 are in the "ON" position.
- 5) Select the desired test mode with SW2-8 (see table below)

Switch	Testing Mode	Setting	Description
	Output	Off	Sequentially turns all the outputs ON and OFF.
SW2-8	Input/ Output	On	Causes all of the odd outputs to come on and stay on until an input is made. When an input is made, the outputs will toggle to the even outputs.

6) Make sure that all of the other switches are in the "OFF" position.

The initial conditions are now set. To enable the Self-Test Mode, apply power to the manifold and make the following changes while the module status LED is blinking (within 5 to 10 seconds of power up):

- 1) Set SW2-6 to the "ON" position.
- 2) Set SW2-7 to the "OFF" position.

Once Self-Test Mode is enabled, the module status LED will flash red/green until Self-Test Mode is terminated by removing power to the unit. Remember to return the MCM settings to their original settings to return the communication node to normal operation.

Air should be disconnected to the manifold when attempting to run the Self-Test Mode to prevent unwanted motion. Communication lines should be disconnected before attempting to run the Self-Test Mode.

5) I/O Mapping Example

Example:

Assumed Settings

- Single Z-BoardsTM used with single solenoid valves
- Double Z-BoardsTM used with double solenoid valves

For simplicity, two mapping formats are given to match appropriate software tools (i.e. DeviceLogix is for the logic editor function within RSNetworx[™] for DeviceNet).

Discrete I/O Configuration									
Pos No.	Module Type	Part No.	Rx By	Tx vtes					
1	MCM	239-1384							
2	8O Sourcing (PNP)	239-1315	1	1					
3	16O Sourcing (PNP)	239-1319	1	2					
4	4I Sinking (NPN)	239-1304	1	0					
5	8I Sinking (NPN)	239-1308	1	0					

Manifold I/O Configuration

Outputs and Mapping Location							
DeviceNet DeviceL							
-Valve Outputs = 12	Byte 0, Bits 0-7 Byte 1, Bits 0-3	Bits 0-11					
-Allocated Unused Valve Outputs = 20	Byte 1, Bits 4-7 Bytes 2 - 3, Bits 0-7	Bits 12-31					
-Discrete Outputs = 24	Bytes 4,5 & 6 Bits 0-7	Bits 32-55					
Total Outputs = 56							

Inputs and Mapping Location							
	DeviceNet	DeviceLogix					
-Discrete Inputs = 12	Byte 6, Bits 0-3 Byte 7, Bits 0-7	Bits0-3 and 8-15					
-Allocated and Reserved Inputs = 4	Byte 6, Bits 4-7	Bits 4-7					
Total Inputs = 16							

energized, the 4 port is pressurized.

3835054 TDG22DLQS3-0 1/07 Subject to change without notice

is pressurized.

DeviceLogix (Logic Editor) I/O Mapping Table Example Continued

Discrete Output Table							
Output 0	Output 1	Output 2	Output 3	Output 4	Output 5	Output 6	Output 7
Valve Coil No. 1	Valve Coil No. 2	Valve Coil No. 3	Valve Coil No. 4	Valve Coil No. 5	Valve Coil No. 6	Valve Coil No. 7	Valve Coil No. 8
Output 8	Output 9	Output 10	Output 11	Output 12	Output 13	Output 14	Output 15
Valve Coil No. 9	Valve Coil No. 10	Valve Coil No. 11	Valve Coil No. 12	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved
Output 16	Output 17	Output 18	Output 19	Output 20	Output 21	Output 22	Output 23
Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved
Output 24	Output 25	Output 26	Output 27	Output 28	Output 29	Output 30	Output 31
Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved
Output 32	Output 33	Output 34	Output 35	Output 36	Output 37	Output 38	Output 39
Discrete Output No. 0	Discrete Output No. 1	Discrete Output No. 2	Discrete Output No. 3	Discrete Output No. 4	Discrete Output No. 5	Discrete Output No. 6	Discrete Output No. 7
Output 40	Output 41	Output 42	Output 43	Output 44	Output 45	Output 46	Output 47
Discrete Output No. 0	Discrete Output No. 1	Discrete Output No. 2	Discrete Output No. 3	Discrete Output No. 4	Discrete Output No. 5	Discrete Output No. 6	Discrete Output No. 7
Output 48	Output 49	Output 50	Output 51	Output 52	Output 53	Output 54	Output 55
Discrete Output No. 8	Discrete Output No. 9	Discrete Output No. 10	Discrete Output No. 11	Discrete Output No. 12	Discrete Output No. 13	Discrete Output No. 14	Discrete Output No. 15

Discrete Input Table							
Input 0	Input 1	Input 2	Input 3	Input 4	Input 5	Input 6	Input 7
Discrete Input No. 0	Discrete Input No. 1	Discrete Input No. 2	Discrete Input No. 3	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved
Input 8	Input 9	Input 10	Input 11	Input 12	Input 13	Input 14	Input 15
Discrete Input No. 0	Discrete Input No. 1	Discrete Input No. 2	Discrete Input No. 3	Discrete Input No. 4	Discrete Input No. 5	Discrete Input No. 6	Discrete Input No. 7

Network Output Table								
Output 0 Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Output 7							Output 7	
Network Output No. 0	Network Output No. 1	Network Output No. 2	Network Output No. 3	Network Output No. 4	Network Output No. 5	Network Output No. 6	Network Output No. 7	

Network Input Table							
Input 0	Output 1	Input 2	Input 3	Input 4	Input 5	Input 6	Input 7
Network Input No. 0	Network Input No. 1	Network Input No. 2	Network Input No. 3	Network Input No. 4	Network Input No. 5	Network Input No. 6	Network Input No. 7

	Fault Input Table (Status Input Bits)							
Fault Input 0	Fault Input 1	Fault Input 2	Fault Input 3	Fault Input 4	Fault Input 5	Fault Input 6	Fault Input 7	
Coil No. 1 Status	Coil No. 2 Status	Coil No. 3 Status	Coil No. 4 Status	Coil No. 5 Status	Coil No. 6 Status	Coil No. 7 Status	Coil No. 8 Status	
Fault Input 8	Fault Input 9	Fault Input 10	Fault Input 11	Fault Input 12	Fault Input 13	Fault Input 14	Fault Input 15	
Coil No. 9 Status	Coil No. 10 Status	Coil No. 11 Status	Coil No. 12 Status	Coil No. 13 Status	Coil No. 14 Status	Coil No. 15 Status	Coil No. 16 Status	
Fault Input 16	Fault Input 17	Fault Input 18	Fault Input 19	Fault Input 20	Fault Input 21	Fault Input 22	Fault Input 23	
Coil No. 17 Status	Coil No. 18 Status	Coil No. 19 Status	Coil No. 20 Status	Coil No. 21 Status	Coil No. 22 Status	Coil No. 23 Status	Coil No. 24 Status	
Fault Input 24	Fault Input 25	Fault Input 26	Fault Input 27	Fault Input 28	Fault Input 29	Fault Input 30	Fault Input 31	
Coil No. 25 Status	Coil No. 26 Status	Coil No. 27 Status	Coil No. 28 Status	Coil No. 29 Status	Coil No. 30 Status	Coil No. 31 Status	Coil No. 32 Status	

The "Network Outputs" are data coming from the communications node and reported to the Master Input Data file. The "Network Inputs" are data coming from the Master Output Data file to the communications node. They are used for handshaking communication between master (scanner) and slave (node) if DeviceLogix is used on a DeviceNet network.

3835054 TDG22DLQS3-0 1/07 Subject to change without notice

DeviceNet I/O Mapping Table Example Continued

	Output Table								
BYTE	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	Valve Coil	Valve Coil	Valve Coil						
	No. 8	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	
1	Allocated &	Allocated &	Allocated &	Allocated &	Valve Coil	Valve Coil	Valve Coil	Valve Coil	
	Reserved	Reserved	Reserved	Reserved	No. 12	No. 11	No. 10	No. 9	
2	Allocated &	Allocated &	Allocated &						
	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
3	Allocated &	Allocated &	Allocated &						
	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
4	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	
	Output No. 7	Output No. 6	Output No. 5	Output No. 4	Output No. 3	Output No. 2	Output No. 1	Output No. 0	
5	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	
	Output No. 7	Output No. 6	Output No. 5	Output No. 4	Output No. 3	Output No. 2	Output No. 1	Output No. 0	
6	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	
	Output No. 15	Output No. 14	Output No. 13	Output No. 12	Output No. 11	Output No. 10	Output No. 9	Output No. 8	
7	Network	Network	Network	Network	Network	Network	Network	Network	
	Input No. 7	Input No. 6	Input No. 5	Input No. 4	Input No. 3	Input No. 2	Input No. 1	Input No. 0	

	Input Table								
BYTE	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	Coil No. 8	Coil No. 7	Coil No. 6	Coil No. 5	Coil No. 4	Coil No. 3	Coil No. 2	Coil No. 1	
0	Status								
1	Coil No. 16	Coil No. 15	Coil No. 14	Coil No. 13	Coil No. 12	Coil No. 11	Coil No. 10	Coil No. 9	
1	Status								
2	Coil No. 24	Coil No. 23	Coil No. 22	Coil No. 21	Coil No. 20	Coil No. 19	Coil No. 18	Coil No. 17	
2	Status								
2	Coil No. 32	Coil No. 31	Coil No. 30	Coil No. 29	Coil No. 28	Coil No. 27	Coil No. 26	Coil No. 25	
3	Status								
							Status for	Status for	
4	Allocated &	Discrete	Discrete						
7	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Outputs	Outputs	
							No. 4-7	No. 0-3	
					Status for	Status for	Status for	Status for	
5	Allocated &	Allocated &	Allocated &	Allocated &	Discrete	Discrete	Discrete	Discrete	
5	Reserved	Reserved	Reserved	Reserved	Outputs	Outputs	Outputs	Outputs	
					No. 12-15	No. 8-11	No. 4-7	No. 0-3	
(Allocated &	Allocated &	Allocated &	Allocated &	Discrete	Discrete	Discrete	Discrete	
0	Reserved	Reserved	Reserved	Reserved	Input No. 3	Input No. 2	Input No. 1	Input No. 0	
-	Discrete								
/	Input No. 7	Input No. 6	Input No. 5	Input No. 4	Input No. 3	Input No. 2	Input No. 1	Input No. 0	
	Network								
8	Output No. 7	Output No. 6	Output No. 5	Output No. 4	Output No. 3	Output No. 2	Output No. 1	Output No. 0	

The "Network Outputs" are data coming from the communications node and reported to the Master Input Data file. The "Network Inputs" are data coming from the Master Output Data file to the communications node. They are used for handshaking communication between master (scanner) and slave (node) if DeviceLogix is used on a DeviceNet network.

6) Output Short Circuit Protection (Status Input Bits)

Status Input Bits report the integrity of the load being driven by the output driver. They must be mapped to the scanner as part of the Input Size Value. Please refer to the table below for Status Input Bit action during fault condition:

Output Type	Output State	Fault Condition	Status Bit
	ON	No Fault	0
valve Solenoid Coll Driver of	UN	Fault - Short Circuit, Over Temp/Over Current	1
Discrete Outputs	OFF	No Fault	0
Discrete Outputs	OFF	Fault - Open Load	1
Sourcing (PNP)	ON	No Fault	0
Discrete Outputs	UN	Fault - Short Circuit, Over Temp/Over Current	1

7) Ground Wiring

All Numatics Inc. communication nodes should be grounded during the installation process. These grounding guidelines can be found in National Electrical code IEC 60204-1 or EN 60204-1. There also is a, "ATTENTION: CONNECT TO EARTH GROUND FOR PROPER GROUNDING OF UNIT", label attached to the chassis ground connection point on the G2-2 series communication node housing. This label also points out where the grounding guidelines can be found.

Proper grounding will alleviate and prevent many intermittent problems with network communication.

When grounding to a machine frame, please ensure that the machine frame itself is already properly grounded.

Better grounding can be achieved when larger diameter (lower gauge) wire is used.

3835054 TDG22DLQS3-0 1/07 Subject to change without notice

8) Communication Module Connector Pin-Outs

DeviceNet Communication Connector Pin-Out

Pin No.	Function	Description
1	Shield	Cable shield
2	V+	Bus Power, 11-25VDC
3	V-	Bus Power, Common
4	CAN_H	Controller Area Network High, Communication Line
5	CAN_L	Controller Area Network Low, Communication Line

Auxiliary Power Connector Pin-Out

Standard Bin No	Cenelec	Function	Description		
F III 1 NO .	PIII INO.				
1	1	+24VDC	Voltage Used to Power Outputs		
1	1	(Valves and Outputs)	(Valve Coils and Discrete Outputs)		
2	3	Earth Ground	Protective Earth (Case Ground)		
3	4	0VDC Common	0VDC Common, for Valves, I/O, and Node Power		
4	2	+24VDC	Voltage Used to Power Discrete Inputs and Node		
4	2	(Node and Inputs)	Electronics		

 $\frac{\text{Pin-Out}}{(\text{Std.})}$

Pin-Out (Micro Opt.)

<u>Pin-Out</u> (Cenelec Opt.)

Com. - MINI Aux. - MINI

Com. - 12mm, Micro Aux. - MINI

CE

СОМ

PIN 2= V+

PIN 3= V-

AUX

PIN 1= SHIELD

PIN 4= CAN_H

PIN 5= CAN_L

DeviceLogix_{TM}

PIN 1= +24VDC (VALVES & OUTPUTS) PIN 2= EARTH GROUND PIN 3= 0VDC COMMON PIN 4= +24VDC (NODE & INPUTS)

-5 MALE

MALE

2

Maximum current capacity on the 0VDC common pin of auxiliary power connector is 8 Amps. The combined draw of the +24VDC Valves & Outputs and +24VDC Node & Inputs pins cannot exceed 8 Amps, at any given moment in time.

The auxiliary power Node & Inputs pin supplies power to the node electronics. This pin must be powered at all times for communication node to be functional.

The Cenelec power connector has a black insert and the standard power connector has a vellow insert.

3835054 TDG22DLQS3-0 1/07 Subject to change without notice

www.numatics.com/fieldbus

9) <u>LED Functions</u>

Upon power up, the LEDs indicate the status of the unit. There are seven LEDs on the G2-2 DeviceLogix node; Network Status, Module Status, Run/Force I/O, two for internal fuse integrity, and two for Aux. Power status.

LED Name	Color	Status	Description
	Off	OFF	Stand Alone – Network cable is not connected to node. Normal Operation Networked - Device is not on-line; Bus power not applied; Physical problem with network; Improper baud rate.
NET STATUS	Green	ON	Normal operation. Device is on-line and has established a connection.
(INCLIVOIR Status)		FLASHING	Device is on-line but has no established connections.
	Red	ON	The device has detected a bus error that has rendered it incapable of communicating on the network; Duplicate MAC ID; "Bus Off" condition; Physical problem with network.
		FLASHING	Communication failure – one or more I/O connections have timed out.
		OFF	Critical hardware fault. Microprocessor is not running.
		ON	Normal operation. The device is operating properly.
MOD STATUS (Module Status)	Green	FLASHING	Stand Alone – If logic is disabled and communication status override is disabled then network power is absent.
		EL AGUNDIO	Networked - Network power is absent.
	Green Ked	FLASHING	Module is in self-test mode.
RUN / FORCE	Yellow	OFF	Logic is disabled
I/O		ON EL AGUNDIO	Logic is enabled
EUSE 1	Red	OFF	Logic is enabled and local forces are applied Internal fuse $F1$ is OK (valid only when power is applied to $+24V_{VLV/OUT}$ pin on Aux. Power connector).
10021	- Red	ON	Internal fuse <i>F1</i> is open; No power is internally provided to valves or outputs. Communication NOT affected.
+24V VLV/OUT	Green	OFF	No DC Power present at $+24V_{VLV/OUT}$ pin on Aux. Power connector.
		ON	DC Power applied to +24V _{VLV/OUT} pin on Aux. Power Connector.
FUSE 2	Ped	OFF	Internal fuse $F2$ is OK (valid only when power is applied to $+24V_{NODE/IN}$ pin on Aux. Power connector.
10022		ON	Internal fuse <i>F2</i> is open; No power is internally provided to node electronics or inputs. Communication Node will not function.
+24V NODE/IN	Green	OFF	No DC Power present at $+24V_{NODE/IN}$ pin on Aux. Power connector.
		ON	DC Power applied to $\pm 24V_{NODE}$ (by pin on Aux, Power connector.

3835054 TDG22DLQS3-0 1/07 Subject to change without notice

10) Function Block

Numatics DeviceLogix nodes integrates all four types of function blocks; Boolean, Bistable, Counter and Timers. A maximum of 72 function blocks, in any combination, can be used to develop a program sequence.

Boolean	Bistable	Counter	Timer
AND	SRL (SR-Latch)	UPC (up counter)	OND (on delay timer)
OR	RSL (RS-Latch)	UPD (up and down counter)	OFD (off delay timer)
XOR (exclusive OR)			PUL (pulse timer)
NOT			
NAND (negative output AND)			
NOR (negative output OR)			
XNO (negative output exclusive OR)			

11) Ladder Components

Numatics DeviceNet/DeviceLogix nodes also have the ability to be programmed using the ladder editor in RSNetworx. The ladder editor still integrates Latches, Counters and Timers, but instead of Boolean logic blocks, it uses ladder rungs and branches. Also, instead of a maximum function block number, there is a maximum amount of memory available for use. A percentage will appear in the message window below the ladder editor window indicating how much memory the user still is allowed.

Latch	Counter	Timer
SRL (SR-Latch)	UPC (up counter)	OND (on delay timer)
RSL (RS-Latch)	UPD (up and down counter)	OFD (off delay timer)
		PUL (pulse timer)

12) Stand-Alone Versus Networked Functionality

The Numatics DeviceLogix communication node can be used as a stand-alone programmable device or as part of a DeviceNet network. Using the RSNetworxTM for DeviceNet software, different settings must be enabled or disabled to configure these options.

Stand-Alone Settings

To configure your Numatics DeviceLogix manifold to function as a stand-alone node, enable both the *"Network Status Override" and "Comm. Status Override".*

	*lavout 2 fe Numatic	or GM RAMOS - RSI 25 G2-2 DL martys	NetWorx	for De	viceNet	?	×
∐ [⊥] ∐ ₹	General C	Device Parameters	O Defaults	EDS I	File DeviceLog	ix	
L F F	Groups All paran	neters	On-Line -	e	Upload From	m Device	N C
	Resto Pa	re Default Values rameter Help	II (Start Mc	onitor	
	🖻 🍲 I	Parameter		Curre	nt Value		
	l	Logic Enable		Enabl	ed	•	
	A	Autobaud		Enabl	ed	•	
	🖻 🖻 I	input Size Total (Rx)		9 Byte	es		
		Output Size Total (Tx)		8 Byte	es		
	📄 🖻 🛝	/alve Driver Type		239-1	290 / 1291		
	🖻 🗎 🔪	/alve Driver Input Size	e (Status)	4 Byte	es		
	📄 🖻 🛝	/alve Driver Output Si	ze	4 Byte	es		
	🖻 S	Slot 1		239-1	384: Rx – 0, Tx	c – 0	
	🖻 🖻 S	Slot 2		239-1	315: Rx – 1, Tx	(— 1	
	🖻 🖻 S	Slot 3		239-1	319: Rx – 1, Tx	(-2	
	🗈 S	Slot 4		239-1	304: Rx – 1, Tx	(— 0	
	🗋 🖻 S	Slot 5		239-1	308: Rx – 1, Tx	(— 0	
	🖻 🖻 S	Slot 6		No De	efault		
	1	Vetwork Status Overri	ide	Enabl	ed	· ·	
		Communication Status	s Overri	Enabl	ed		
						•	
		ок	Cancel		Apply	Help	

Network/Communication Settings

The following table describes the behaviors that occur when the Network Status Override and Communication Status Override attributes are disabled. The user may have the DeviceLogix node begin local logic mode in cases where a network signal is lost. This is configured by enabling *"Comm Status Override"* and *"Network Status Override"*.

Network/Communication Settings DISABLED Chart

Attribute	Network LED Status	Event	Behavior
	Off	The manifold is powered up without a network connection	The manifold is put into an inoperable state and all
Network Status	Red	Duplicate Mac ID error	Outputs remain off.
Override (Disabled)	Flashing Red	The manifold has lost the I/O connection.	The manifold output values are updated based on the Output Fault Action and Fault Value attributes.
	Green	An Idle is received (still on network, but the PLC is not sending data to it. For example, the key on the PLC is turned into program mode)	The manifold output values are updated based on the Output Idle Action and Idle Value attributes.
Communication Status Override (Disabled)	Flashing Green	Communications not established (module not online) - OR - The manifold is online but there is no data being sent between a master and itself	The manifold outputs remain in the available state until an I/O connection is established.
	Flashing Red	The manifold has lost the I/O connection.	The manifold output values are updated based on the Output Fault Action and Fault Value attributes.

The manifold can ALWAYS be controlled by local logic when the Network Status and Communication Status overrides are ENABLED.

13) G2-2 DeviceLogix Features

Features	Description
DeviceNet Spec. Supported	Designed to DeviceNet Specification Revision 2.0
Bus Topology	Straight with restricted drops
Baud Rates Supported	125Kbps, 250 Kbps and 500 Kbps and Autobaud
Duplicate address detection	If duplicate address detected on power up, duplicates will not progress to run mode
Error Correction	Yes, if error detected, sender is requested to repeat the message
Address Setting	Via Software or optional Manual Configuration Module (MCM)
Termination Resistor	A 121 ohms, 1%, ¹ / ₄ Watt resistor is required at each end of the
(external)	trunk line. Not necessary for stand alone applications.
	Auto-Device Replacement is supported when the MCM is
ADK support	disabled or not present. Program sequences are also saved.
Function Blocks	Maximum of 72 function blocks supported
Connection Types Supported	Polled, Cyclic, Change of State (COS) or Combinations
Timers	Default of 10 millisecond time base only! Regardless of setting.

14) Factory Default Settings

Unless otherwise requested, all standard G2-2 Series DeviceLogix manifolds ship with specific factory default settings. Below is a list of the factory default settings:

Description	Default Settings		
Node Address	63		
Baud Rate	Autobaud	Enabled	
Input Module Power Jumper	PU (Input sensor power supplied by +24VDC Node and Inputs pin on the Aux, power connector)		
Output Module Power Jumper	SP (Output module power supplied by +24VDC Valves and Outputs pin on the Aux, power connector)		
Communication Status Override	Enabled	Configured for	
Network Status Override	Enabled	stand alone applications	
Valve Side Output Bytes	5/5 (4/4 for valve outputs & valve output status bits; 1/1 for network I/O) Bytes		
Discrete I/O Side - I/O Bytes	Self-Configuring based on t	the I/O modules installed.	

15) Technical Support

For technical support, contact your local Numatics distributor. If further information is required, please call Numatics Inc. at (248) 887-4111 and ask for Technical Support.

Issues relating to network set-up, PLC programming, sequencing, software related functions, etc... should be handled with the appropriate product vendor.

Information on device files, technical manuals, local distributors, and other Numatics, Inc. products and support issues can be found on the Numatics, Inc's. WEB site at <u>www.numatics.com</u>

De√iceNet₀

3835054 TDG22DLQS3-0 1/07 Subject to change without notice

www.numatics.com/fieldbus

Pour commencer

Ce document décrit le démarrage rapide de votre îlot de distribution à nœud de communication DeviceLogix série G2-2 intégré.

1) Déballage et inspection

3)

- 1) Inspectez l'emballage extérieur pour détecter tout dommage. Tout dommage constaté doit être signalé au transporteur.
- 2) Retirez l'ensemble de l'îlot de son carton.
 - a) Sortez l'ensemble de son emballage anti-statique.
 - b) Conservez la documentation portant sur l'installation et la configuration.
 - Inspectez l'ensemble de l'îlot pour détecter tout dommage de transport tel que:
 - a) Broches ou connecteurs déformés
 - b) Tout dommage constaté doit être immédiatement signalé au transporteur.

4) Vérifiez que la configuration de l'ensemble de l'îlot livré correspond à votre commande. (distributeurs, E/S, protocole, ...).

2) Introduction à la série G2-2

Ci-dessous un exemple représentant l'ensemble d'un îlot de distributeurs de la série 2012. Cette série d'îlots à bus de terrain est capable d'adresser un total de 224 E/S. L'îlot peut être considéré comme ayant deux parties: la partie *Composants pneumatiques* et la partie *Composants électroniques*. La partie *Composants pneumatiques* et la partie *Composants électroniques*. La partie *Composants pneumatiques* et la partie *Composants électroniques* supporte un maximum de 32 bobines et la partie *Composants électroniques* supporte un maximum de 192 sorties, 96 entrées ou de différentes combinaisons de celles-ci si utilisée en tant que nœud DeviceNet. Si la partie *Composants électroniques* est utilisée comme nœud DeviceLogix, sa capacité s'élève à 48 sorties et 96 entrées connectables. Le module de communication est équipé de deux connecteurs : un connecteur de communication à 5 broches et un connecteur d'alimentation à 4 broches. L'affectation des broches ainsi que les connecteurs E/S sont repérés sur la face latérale de chaque module.

www.numatics.com/fieldbus

3) MCM – Module de configuration manuelle (option)

All DIP switches shown in the "OFF" position

Le MCM (module de configuration manuelle) permet à l'utilisateur de configurer manuellement le taux baud, l'identificateur MAC ID et les autres options définissables par l'utilisateur sans besoin de logiciel de configuration. Ce module n'est pas nécessaire si l'on préfère la configuration par logiciel. Le MCM est équipé de deux ensembles de DIP switchs (SW1 et SW2) et de deux roues codeuses (SW3 et SW4).

Codes des composants du module MCM

Description	Code
Module complet	239-1384
Carte de rechange	256-684

Réglages du MCM

Réglages des DIP switchs (SW1)

Taux Baud

SW1-1	SW1-2	Kbaud
Off*	Off*	125 *
Off	On	250
On	Off	500
On	On	500

Autobaud :

Switch	Réglage	Description
SW1-4	Off*	Autobaud activé (le taux baud est automatiquement configuré à 125 Kbps, 250 Kbps ou 500 Kbps).
SW1-4	On	Autobaud désactivé (réglage manuel du taux baud par switchs ou logiciel).

Configuration manuelle ou par logiciel :

Switch	Réglage	Description
SW1-5	Off	MCM désactivé – Ignorer les réglages MCM (configuration par logiciel)
SW1-5	On	MCM activé – Utiliser les réglages MCM (configuration manuelle)

Réglages des DIP switchs (SW2) - sans fonction

Réglages des roues codeuses (SW3 et SW4)

Identificateur MAC ID (adresse du réseau) :

Switch	Description
SW3	Mise au point des chiffres des unités
SW4	Mise au point des chiffres des dizaines

*Réglage usine

L'adresse réglée en usine est de 63 par défaut. Les réglages des roues codeuses supérieurs à 63 sont remis à 63 par défaut.

Les réglages des DIP switchs et roues codeuses ne prennent effet qu'au prochain cycle de mise sous tension (mise hors tension et mise sous tension).

4) Mode auto-test

Un outil diagnostic interne peut également être activé par le module MCM optionnel. Cet outil permet à l'utilisateur de s'assurer que toutes les entrées et sorties sur l'îlot sont complètement opérationnelles, sans besoin de connexion réseau, ni de contrôleur. Le switch SW2-8 permet à l'utilisateur de choisir entre deux modes test. Le mode test "Entrée/Sortie" teste les entrées de sorte que toutes les sorties commutent entre les valeurs paires et impaires lorsqu'un signal d'entrée est appliqué.

Pour utiliser le mode auto-test, l'utilisateur doit, tout d'abord, paramétrer quelques conditions initiales au moyen du module MCM. Suivre les étapes suivantes pour obtenir les réglages des conditions initiales requises. Lors du paramétrage des conditions initiales, n'oubliez pas de couper l'alimentation électrique de l'îlot avant d'effectuer les modifications sur le MCM.

1) Couper l'alimentation électrique et pneumatique de l'îlot!

- 2) Enregistrez les réglages actuels du MCM.
- 3) Positionnez les roués codeuses sur 99 (SW3 et SW4).
- 4) Assurez-vous que les switchs SW1-5, SW2-1 et SW2-7 sont sur la position "ON".
- 5) Sélectionnez le mode test désiré à l'aide du switch SW2-8 (voir le tableau ci-dessous).

Switch	Mode test	Réglage	Description
Sortie Off		Off	Les sorties sont successivement mises sous tension (ON), puis hors tension (OFF).
SW2-8	Entrée/ Sortie	On	Les sorties impaires sont mises sous tension et restent sous tension jusqu'à ce qu'un signal d'entrée est appliqué. Lorsqu'un signal d'entrée est appliqué, les sorties commutent sur les sorties paires.

6) Assurez-vous que tous les autres switchs sont sur la position "OFF".

Le réglage des condition initiales est alors terminé. Pour activer le mode auto-test, mettez l'îlot sous tension et faites les modifications suivantes pendant que la LED d'état du module clignote (pendant les premières 5 à 10 secondes) :

- 1) Placez le switch SW2-6 sur la position "ON".
- 2) Placez le switch SW2-7 sur la position "OFF".

Dès que le mode auto-test est activé, la LED Bus Error (erreur de bus) clignote rouge/vert jusqu'à ce que le mode auto-test est terminé en coupant l'alimentation en tension du module. N'oubliez pas de remettre les réglages d'origine du MCM pour remettre le nœud de communication en fonctionnement régulier.

Avant de lancer le mode auto-test, coupez l'alimentation en air de l'îlot pour prévenir les mouvements accidentels.

Débranchez les câbles de communication avant de lancer le mode auto-test.

5) Exemple de mapping des E/S

Reglages présumés

- Cartes Z-BoardsTM simples utilisés avec les électrodistributeurs simples
- Cartes Z-BoardsTM doubles utilisés avec les électrodistributeurs doubles

Pour assurer la simplicité, il existe deux formats de mapping adaptés aux outils de logiciel appropriés (c.à.d. DeviceLogix est pour la fonction de l'éditeur logique intégré à RSNetworxTM pour DeviceNet).

Configuration des E/S discrètes

No.	Turna da		Rx	Tx
de Pos	module	Code	Octets	
1	MCM	239-1384	-	
2	8O Sourcing (PNP)	239-1315	1	1
3	16O Sourcing (PNP)	239-1319	1	2
4	4I Sinking (NPN)	239-1304	1	0
5	8I Sinking (NPN)	239-1308	1	0

Configuration des E/S de l'îlot

Allocation sorties et mapping				
	DeviceNet	DeviceLogix		
Sorties distr. = 12	Octet 0, Bits 0-7 Octet 1, Bits 0-3	Bits 0-11		
Sorties distr. allouées non-utilisées = 20	Octet 1, Bits 4-7 Octets 2 - 3, Bits 0-7	Bits 12-31		
Sorties discrètes = 24	Octets 4,5 & 6 Bits 0-7	Bits 32-55		
Nb. total de sorties = 56				

Allocation entrées et mapping					
	DeviceNet	DeviceLogix			
Entrées discrètes = 12	Octet 6, Bits 0-3 Octet 7, Bits 0-7	Bits0-3 et 8-15			
Entrées allouées et réservées = 4	Octet 6, Bits 4-7	Bits 4-7			
Nb. total d'entrées = 16					

Exemple de Mapping des E/S DeviceLogix (éditeur logique - continuation)

Tableau des sorties discrètes							
Sortie 0	Sortie 1	Sortie 2	Sortie 3	Sortie 4	Sortie 5	Sortie 6	Sortie 7
Bobine no. 1	Bobine no. 2	Bobine no. 3	Bobine no. 4	Bobine no. 5	Bobine no. 6	Bobine no. 7	Bobine no. 8
Sortie 8	Sortie 9	Sortie 10	Sortie 11	Sortie 12	Sortie 13	Sortie 14	Sortie 15
Bobine no. 9	Bobine no. 10	Bobine no. 11	Bobine no. 12	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé
Sortie 16	Sortie 17	Sortie 18	Sortie 19	Sortie 20	Sortie 21	Sortie 22	Sortie 23
Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé
Sortie 24	Sortie 25	Sortie 26	Sortie 27	Sortie 28	Sortie 29	Sortie 30	Sortie 31
Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé
Sortie 32	Sortie 33	Sortie 34	Sortie 35	Sortie 36	Sortie 37	Sortie 38	Sortie 39
Sortie discrète 0	Sortie discrète 1	Sortie discrète 2	Sortie discrète 3	Sortie discrète 4	Sortie discrète 5	Sortie discrète 6	Sortie discrète 7
Sortie 40	Sortie 41	Sortie 42	Sortie 43	Sortie 44	Sortie 45	Sortie 46	Sortie 47
Sortie discrète 0	Sortie discrète 1	Sortie discrète 2	Sortie discrète 3	Sortie discrète 4	Sortie discrète 5	Sortie discrète 6	Sortie discrète 7
Sortie 48	Sortie 49	Sortie 50	Sortie 51	Sortie 52	Sortie 53	Sortie 54	Sortie 55
Sortie discrète 8	Sortie discrète 9	Sortie discrète 10	Sortie discrète 11	Sortie discrète 12	Sortie discrète 13	Sortie discrète 14	Sortie discrète 15

Tableau des entrées discrètes									
Entrée 0	Entrée 1	Entrée 2	Entrée 3	Entrée 4	Entrée 5	Entrée 6	Entrée 7		
Entrée discrète 0	Entrée discrète 1	Entrée discrète 2	Entrée discrète 3	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé		
Entrée 8	Entrée 9	Entrée 10	Entrée 11	Entrée 12	Entrée 13	Entrée 14	Entrée 15		
Entrée discrète 0	Entrée discrète 1	Entrée discrète 2	Entrée discrète 3	Entrée discrète 4	Entrée discrète 5	Entrée discrète 6	Entrée discrète 7		

Tableau des sorties réseau							
Sortie 0	Sortie 1	Sortie 2	Sortie 3	Sortie 4	Sortie 5	Sortie 6	Sortie 7
Sortie réseau 0	Sortie réseau 1	Sortie réseau 2	Sortie réseau 3	Sortie réseau 4	Sortie réseau 5	Sortie réseau 6	Sortie réseau 7

Tableau des entrées réseau							
Entrée 0	Entrée 0 Sortie 1 Entrée 2 Entrée 3 Entrée 4 Entrée 5 Entrée 6 Entrée 7						Entrée 7
Entrée réseau 0	Entrée réseau 1	Entrée réseau 2	Entrée réseau 3	Entrée réseau 4	Entrée réseau 5	Entrée réseau 6	Entrée réseau 7

	Tableau des entrées de défauts (Bits d'entrée d'état)									
Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de			
défaut 0	défaut 1	défaut 2	défaut 3	défaut 4	défaut 5	défaut 6	défaut 7			
Etat bobine 1	Etat bobine 2	Etat bobine 3	Etat bobine 4	Etat bobine 5	Etat bobine 6	Etat bobine 7	Etat bobine 8			
Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de			
défaut 8	défaut 9	défaut 10	défaut 11	défaut 12	défaut 13	défaut 14	défaut 15			
Etat bobine 9	Etat bobine 10	Etat bobine 11	Etat bobine 12	Etat bobine 13	Etat bobine 14	Etat bobine 15	Etat bobine 16			
Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de			
défaut 16	défaut 17	défaut 18	défaut 19	défaut 20	défaut 21	défaut 22	défaut 23			
Etat bobine 17	Etat bobine 18	Etat bobine 19	Etat bobine 20	Etat bobine 21	Etat bobine 22	Etat bobine 23	Etat bobine 24			
Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de	Entrée de			
défaut 24	défaut 25	défaut 26	défaut 27	défaut 28	défaut 29	défaut 30	défaut 31			
Etat bobine 25	Etat bobine 26	Etat bobine 27	Etat bobine 28	Etat bobine 29	Etat bobine 30	Etat bobine 31	Etat bobine 32			

Il s'agit par les "sorties réseau" des données en provenance du nœud de communication transmises au fichier maître des données d'entrée. Il s'agit par les "entrées réseau" des données en provenance du fichier maître des données de sortie transmises au nœud de communication. Elles sont utilisées pour le handshaking (l'échange de données suivant un protocole de transfert) entre le maître (scanner) et l'esclave (nœud) lorsque DeviceLogix est utilisé sur un réseau DeviceNet.

Exemple de Mapping des E/S DeviceNet - continuation

Tableau des sorties										
OCTET	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Bobine no. 8	Bobine no. 7	Valve Coil No. 6	Bobine no. 5	Bobine no. 4	Bobine no. 3	Bobine no. 2	Bobine no. 1		
1	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Bobine no. 12	Bobine no. 11	Bobine no. 10	Bobine no. 9		
2	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé		
3	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé		
4	Sortie discrète 7	Sortie discrète 6	Sortie discrète 5	Sortie discrète 4	Sortie discrète 3	Sortie discrète 2	Sortie discrète 1	Sortie discrète 0		
5	Sortie discrète 7	Sortie discrète 6	Sortie discrète 5	Sortie discrète 4	Sortie discrète 3	Sortie discrète 2	Sortie discrète 1	Sortie discrète 0		
6	Sortie discrète 15	Sortie discrète 14	Sortie discrète 13	Sortie discrète 12	Sortie discrète 11	Sortie discrète 10	Sortie discrète 9	Sortie discrète 8		
7	Entrée réseau 7	Entrée réseau 6	Entrée réseau 5	Entrée réseau 4	Entrée réseau 3	Entrée réseau 2	Entrée réseau 1	Entrée réseau 0		

	Tableau des entrées									
OCTET	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Etat bobine 8	Etat bobine 7	Etat bobine 6	Etat bobine 5	Etat bobine 4	Etat bobine 3	Etat bobine 2	Etat bobine 1		
1	Etat bobine 16	Etat bobine 15	Etat bobine 14	Etat bobine 13	Etat bobine 12	Etat bobine 11	Etat bobine 10	Etat bobine 9		
2	Etat bobine 24	Etat bobine 23	Etat bobine 22	Etat bobine 21	Etat bobine 20	Etat bobine 19	Etat bobine 18	Etat bobine 17		
3	Etat bobine 32	Etat bobine 31	Etat bobine 30	Etat bobine 29	Etat bobine 28	Etat bobine 27	Etat bobine 26	Etat bobine 25		
4	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Etat des sorties discrètes 4-7	Etat des sorties discrètes 0-3		
5	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Etat des sorties discrètes 12-15	Etat des sorties discrètes 8-11	Etat des sorties discrètes 4-7	Etat des sorties discrètes 0-3		
6	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Entrée discrète 3	Entrée discrète 2	Entrée discrète 1	Entrée discrète 0		
7	Entrée discrète 7	Entrée discrète 6	Entrée discrète 5	Entrée discrète 4	Entrée discrète 3	Entrée discrète 2	Entrée discrète 1	Entrée discrète 0		
8	Sortie réseau 7	Sortie réseau 6	Sortie réseau 5	Sortie réseau 4	Sortie réseau 3	Sortie réseau 2	Sortie réseau 1	Sortie réseau 0		

Il s'agit par les "sorties réseau" des données en provenance du nœud de communication transmises au fichier maître des données d'entrée. Il s'agit par les "entrées réseau" des données en provenance du fichier maître des données de sortie transmises au nœud de communication. Elles sont utilisées pour le handshaking (l'échange de données suivant un protocole de transfert) entre le maître (scanner) et l'esclave (nœud) lorsque DeviceLogix est utilisé sur un réseau DeviceNet.

6) Protection des sorties contre les courts-circuits (bits d'entrée d'état)

Les bits d'entrée d'état signalent l'intégrité de la charge pilotée par le pilote de sortie. Ils doivent être mappés sur le scanner comme partie de la valeur de la taille de l'entrée. Voir le tableau ci-dessous pour l'action du bit d'entrée d'état lors de l'occurrence d'une condition de défaut :

Type de sortie	<i>Etat de la sortie</i>	Condition de défaut	Bit d'état
Bilata da la babina		Sans défaut	0
d'électrodistributeur ou	ON	Défaut – court-circuit, surchauffe/surintensité de courant	1
Sinking (INPIN)	OFF	Sans défaut	0
Sorties discretes	UIT	Défaut- charge ouverte	1
Sourcing (PNP)		Sans défaut	0
Sorties discrètes	ON	Défaut – court-circuit, surchauffe/surintensité de courant	1

7) Mise à la terre

Tous les nœuds de communication de Numatics Inc. doivent être mis à la terre pendant la procédure d'installation. Les exigences relatives à la mise à la terre sont fournies dans les normes CEI 60204-1 ou EN 60204-1. Une étiquette d'avertissement "ATTENTION: RELIER L'EQUIPEMENT A UNE PRISE DE TERRE POUR ASSURER UNE BONNE MISE A LA TERRE" est également apposée sur le point de connexion de mise à la terre du châssis du boîtier du nœud de communication série G2-2. Les normes à suivre relatives à la mise à la terre sont également indiquées sur l'étiquette. Chassis Ground

for grounding guidelines

Connection Point

Une bonne mise à la terre peut réduire et prévenir bien des problèmes d'intermittence au niveau de la communication en réseau. Avant d'effectuer le raccordement de la mise à la terre sur un bâti de machine, s'assurer que le bâti lui-même est déjà mis à la terre.

Une meilleure mise à la terre peut être réalisée avec des fils de section plus importante (jauge inférieur).

8) Affectation des broches du connecteur du module de communication

Affectation du connecteur de communication DeviceNet

No. de broche	Fonction	Description
1	Blindage	Blindage de câble
2	V+	Tension bus, 11-25VCC
3	V-	Tension bus, commun
4	CAN_H	Réseau CAN (Controller Area Network) high, ligne de communication
5	CAN_L	Réseau CAN (Controller Area Network) low, ligne de communication

Affectation des broches du connecteur d'alimentation auxiliaire

No. de broche standard	Cenelec No. de broche	Fonction	Description
1	1	+24VCC (Distributeurs et sorties)	Tension utilisée pour l'alimentation des sorties (Bobines d'ED et sorties discrètes)
2	3	Mise à la terre	Mise à la terre (mise à la terre de l'enveloppe)
3	4	0VCC Commun	0VCC commun, pour distributeurs, E/S, et alimentation du nœud
4	2	+24VCC (Nœud et entrées)	Tension utilisée pour l'alimentation des entrées discrètes et l'électronique du nœud

 $\frac{\text{Pin-Out}}{(\text{Std.})}$

Com. - MINI Aux. - MINI

Com. - 12mm, Micro Aux. - MINI

Com. - MINI Aux. - MINI (Cenelec)

La capacité maxi. de courant sur la broche 0VCC commun du connecteur d'alimentation auxiliaire est de 8A. La consommation combinée des distributeurs et sorties +24VCC et des broches du nœud et des entrées +24VCC ne peut pas dépasser 8A à tout moment.

La broche d'alimentation auxiliaire du nœud et des entrées alimente l'électronique du nœud. Cette broche doit être alimentée en tension à tout moment pour permettre au nœud de communication de rester opérationnel.

Le connecteur d'alimentation Cenelec est équipé d'un insert noir et le connecteur d'alimentation standard est équipé d'un insert jaune.

9) Fonction des voyants LED

A la mise sous tension, les voyants LED indiquent l'état de l'unité. Le nœud DeviceLogix G2-2 dispose de sept voyants LED; Network Status (état du réseau), Module Status (état du module), Run/Force I/O (exécuter/forcer les E/S), deux pour pour l'intégrité des fusibles internes, et deux pour l'état de l'alimentation Aux.

Nom du voyant LED	Couleur	Etat	Description	
	Off	OFF	Autonome – le câble de réseau n'est pas raccordé au nœud. Fonctionnement régulier. En réseau – L'appareil n'est pas on-line; le bus n'est pas alimenté en tension; problème physique avec le réseau, taux baud incorrecte.	
	Vort	ON	Fonctionnement régulier. L'appareil est on-line et la connexion est établie.	
NET STATUS	ven	Clignotant	L'appareil est on-line mais la connexion n'est pas établie.	
(état du réseau)	Rouge	ON	L'appareil a détecté une erreur de bus qui l'a rendu incapable de communiquer sur le réseau; doubler l'identificateur MAC ID; condition "Bus Off"; problème physique avec le réseau.	
		Clignotant	Défaut de communication – le temps de connexion d'une ou plusieurs connexions E/S est dépassé.	
		OFF	Défaut critique de hardware. Le microprocesseur ne fonctionne pas.	
		ON	Fonctionnement régulier. L'appareil fonctionne correctement.	
MOD STATUS	Vert		Autonome – Si la logique est désactivée et l'override de l'état de communication est	
(état du module)		Clignotant	désactivé, l'alimentation n'est pas présente sur le réseau.	
			En réseau - Pas de tension sur le réseau.	
	Vert Rouge	Clignotant	Le module est en mode auto-test.	
RUN/FORCE		OFF	La logique est désactivée.	
I/O	Iaune	ON	La logique est activée.	
(exécuter / forcer E/S	Junio	Clignotant	La logique est activée et les forçages locaux sont appliquées.	
		OFF	Fusible interne <i>F1</i> est bon (valide seulement dans le cas où la broche du connecteur d'alimentation auxiliaire $+24V_{VLV/OUT}$ est alimentée).	
FUSE 1	Kouge	ON	Fusible interne <i>F1</i> est ouvert; pas d'alimentation interne des distributeurs ni des sorties. La communication N'EST PAS affectée.	
+24V VLV/OUT	Vert	OFF	Pas de courant CC présent sur la broche $+24V_{VLV/OUT}$ du connecteur d'alimentation auxiliaire.	
		ON	Courant CC appliqué à la broche $+24V_{VLV/OUT}$ du connecteur d'alimentation auxiliaire.	
ELISE 2	Pauca	OFF	Fusible interne F2 est bon (valide seulement dans le cas où la broche du connecteur d'alimentation auxiliaire $+24V_{NODE/IN}$ est alimentée).	
FUSE 2	Kouge	ON	Fusible interne <i>F2</i> est ouvert; pas d'alimentation interne de l'électronique du nœud ni des entrées. Le nœud de communication ne fonctionne pas.	
+24V NODE/IN	Vert	OFF	Pas de courant CC présent sur la broche $+24V_{VLV/OUT}$ du connecteur d'alimentation auxiliaire.	
		ON	Courant CC appliqué à la broche $+24V_{NODE/IN}$ du connecteur d'alimentation auxiliaire.	

10) Bloc fonctionnel

Les noeuds DeviceLogix de Numatics intègrent tous les quatre types de blocs fonctionnels; Boolean *(Booléen)*, Bistable, Counter *(compteur)* et Timer *(temporisateur)*. Un maximum de toute combinaison de 72 blocs fonctionnels peut être utilisé pour développer une séquence de programme.

(Booléen)	(bistable)	(compteur)	(temporisateur)
AND (ET)	SRL (SR-Latch) (verrouillage SR)	UPC (up counter (compteur croissant)	OND (on delay timer (temporisateur activé)
OR (OU)	RSL (RS-Latch) (verrouillage RS)	UPD (up and down counter) (compteur bidirectionnel croissant/décroissant)	OFD (off delay timer) (temporisateur désactivé)
XOR (exclusive OR) (Fonction OU exclusive)			PUL (pulse timer) (temporisateur d'impulsions)
NOT (Fonction NON)			
NAND (negative output AND) (Fonction ET)			
NOR (negative output OR) (Fonction NON-OU)			
XNO (negative output exclusive OR) (fonction NON-OU exclusive)			

11) Elements de l'éditeur de programme Ladder

Les noeuds DeviceNet/DeviceLogix de Numatics peuvent également être programmés en se servant de l'editeur Ladder de RSNetworx. L'éditeur Ladder intègre toujours encore les Latches *(verrouillages)*, Counters *(compteurs)* et Timers *(temporisateurs)*, mais au lieu d'utiliser les blocs logiques Booléens, il utilise des "ladder rungs" *(marches d'échelle)* et des "branches". De plus, au lieu d'un numéro maximal de bloc fonctionnel, il existe une quantité maximale de mémoire utilisable Un pourcentage est affiché dans la fenêtre de message en-dessous de la fenêtre de l'éditeur Ladder indiquant la quantité de mémoire disponible à l'utilisateur.

(verrouillage)	(compteur)	(temporisateur)
SRL (SR-Latch)	LIPC (compteur croissant)	OND (on delay timer
(verrouillage SR)	er e (compteur croissant)	temporisateur activé)
RSL (RS-Latch)	UPD (up and down counter)	OFD (off delay timer)
(verrouillage RS)	(compteur bidirectionnel)	(temporisateur désactivé)
		PUL (pulse timer)
		(temporisateur
		d'impulsions)

12) Fonctionnement autonome vs. fonctionnement en réseau

Le nœud de communication DeviceLogix de Numatics peut être utilisé en tant qu'appareil programmable autonome ou en tant que composant d'un réseau DeviceNet. A l'aide du logiciel RSNetworx[™] pour DeviceNet, de réglages divers doivent être activés ou désactivés pour configurer ces options.

Réglages autonomes

Pour configurer votre îlot DeviceLogix de Numatics pour fonctionner en tant que nœud autonome, activez "Network Status Override" (override de l'état du réseau) et "Comm. Status Override" (override de l'état de communication).

General	Device Parameters I/O Defau	lts EDS	S File DeviceLogix		
Group	G On-Lir	ie		_	
All parameters		alo	Upload From Device		
Restore Default Values		ngie	Download To Device	Ī	
Parameter Help			Start Monitor		
	Parameter	Curr	Current Value		
Logic Enable		Enal	Enabled		
	Autobaud Enal		oled 🔹		
(P)	Input Size Total (Rx)	9 By	9 Bytes		
e	Output Size Total (Tx) 8 B		Bytes		
e	Valve Driver Type	239-	239-1290 / 1291		
	/alve Driver Input Size (Status) 4 Bytes				
e	Valve Driver Output Size	4 By	4 Bytes		
r 🕆	Slot 1	239-	239-1384: Rx – 0, Tx – 0		
r 🕆	Slot 2	239-	239-1315: Rx – 1, Tx – 1		
†	Slot 3 239-1319: Rx – 1, Tx – 2				
e	Slot 4	239-	239-1304: Rx – 1, Tx – 0		
0	Slot 5	239-	239-1308: Rx – 1, Tx – 0		
ê	Slot 6	No E	No Default		
	Network Status Override	Enal	bled -		
	Communication Status Overri	Enal		-	

Réglages réseau / communication

Le tableau suivant décrit le comportement qui se produit lorsque les attributs "Network Status Override" et Communication Status Override" sont désactivés. L'utilisateur pourra déterminer que le noeud DeviceLogix passe en mode logique local en cas de perte de signal de réseau. Pour cette configuration, activer *"Comm. Status Override"* et *"Network Status Override"*.

Etat de Attribut Evènement Comportement LED réseau L'îlot est mis sous tensions sans Off L'îlot se place en état connexion réseau. inopérable et tous les sorties Doubler l'erreur de **Network Status** restent hors tension. Rouge l'identificateur MAC ID. Override Les valeurs de sortie de l'îlot (Override de l'état sont mises à jour sur la base du réseau) Clignoteme Perte de la connexion E/S sur des attributs "Output Fault (Désactivé) l'îlot. Action" (action de défaut de nt rouge sortie) et Fault Value (valeur de défaut). Réception d'un Idle (signal Les valeurs de sortie de l'îlot d'inactivité). sont mises à jour sur la base (Toujours en réseau, mais l'API des attributs "Output Idle Vert ne transmet pas de données au Action" (action d'inactivité de réseau. P.ex., la clé sur l'API est sortie) et Idle Value (valeur sur la position "mode de d'inactivité). programmation". Communication La communication n'est pas **Status Override** établie (le module n'est pas (Override de l'état online) Les sorties de l'îlot restent en Clignoteme de - OU état disponible jusqu'à ce que nt vert communication) la connexion E/S soit établie. L'îlot est online, mais il n'y a pas de transmission de données (Désactivé) entre le maître et l'îlot. Les valeurs de sortie de l'îlot sont mises à jour sur la base des attributs "Output Fault Clignoteme Perte de la connexion E/S sur Action" (action de défaut de nt rouge l'îlot. sortie) et Fault Value (valeur de défaut).

Charte des réglages réseau / communication DESACTIVES

L'îlot peut TOUJOURS être contrôlé par la logique locale lorsque Network Status Override et Communication Status Override sont ACTIVES.

13) Caractéristiques du DeviceLogix série G2-2

Caractéristique	Description		
Spécification DeviceNet supportée	Etablie conformément à la Spécification DeviceNet Révision 2.0		
Topologie de bus	Structure en ligne avec un nombre restreint de dérivations.		
Taux Baud supportés	125Kbps, 250 Kbps et 500 Kbps, et Autobaud.		
Détection de double-adresses	Lors de la détection de doubles-adresses à la mise sous tension, les doubles ne passent pas en mode d'exécution.		
Correction d'erreur	Oui, lors de la détection d'une erreur, l'émetteur est demandé de répéter le message.		
Réglage adresse	A l'aide du logiciel ou du module optionnel de configuration manuelle (MCM).		
Résistance de terminaison (externe)	Une résistance de 121 ohms, 1%, 1/3 watt, doit être connectée à chaque extrémité de la ligne. Les applications autonomes ne nécessitent pas de résistance de terminaison.		
Support ADR	L'Auto-Device Replacement <i>(remplacement d'un équipement sans reconfiguration)</i> est supporté lorsque le MCM est désactivé ou qu'il n'est pas présent. Les séquences de programme sont également sauvegardées.		
Blocs fonctionnels	Support d'un maximum de 72 blocs fonctionnels.		
Types de connexion supportés	Polled (directif), Cyclic (cyclique), Change of State (COS) (change d'état) ou combinaisons de ceux-ci.		
Temporisateurs	Défaut d'une période de 10 millisecondes uniquement! Nonobstant le réglage.		

14) Réglages par défaut programmés en usine

Sauf demande contraire, tous les îlots standard DeviceLogix série G2-2 sont fournis d'usine avec les réglages par défaut . Ci-dessous une liste des réglages par défaut.

Description	Réglages par défaut		
Adresse du nœud	63		
Taux Baud	Autobaud activé		
Cavalier d'alimentation du module d'entrée	PU (Capteur d'entrée alimenté par la broche +24VCC du nœud et des entrées du connecteur d'alimentation auxiliaire)		
Cavalier d'alimentation du module de sortie	SP (Module de sortie alimenté par la broche +24VCC des distributeurs et sorties du connecteur d'alimentation auxiliaire)		
Communication Status Override (Override de l'état de communication)	Activé	Configuré pour les applications autonomes.	
Network Status Override (Override de l'état du réseau)	Activé		
Octets de sortie de la partie composants pneumatiques	5/5 octets (4/4 pour les sorties distributeurs et bits d'état des sorties distributeurs; 1/1 pour les E/S du réseau)		
Partie électronique – octets E/S	Auto-configuration en fonction des modules E/S installés.		

15) Support technique

Pour le support technique, contactez votre distributeur Numatics local. Pour de plus amples informations, veuillez contacter Numatics Inc. sous (248) 887-4111 et demandez le Support Technique. Consultez le vendeur du produit approprié pour toute question relative à la mise en place du réseau, la

programmation de l'API, le séquencement, les fonctions liées au logiciel ... Les informations sur les fichiers des périphériques, les manuels techniques, les distributeurs locaux, ainsi que d'autres informations sur les produits et le support Numatics Inc. se trouvent sur le site web Numatics Inc.

sous www.numatics.com

DeviceNet.

3835054 TDG22DLQS3-0 1/07 Sous réserve de modification sans avis préalable www.numatics.com/fieldbus