Getting Started

This is a brief document designed to quickly get you started setting up your valve manifold with an integrated Numatics' G2-2 series EtherNet/IPTM or Modbus TCP communication node.

1) Initial Unpacking and Inspection

- 1) Examine exterior of package for signs of damage. Report any damage to shipping carrier.
- 2) Remove wrapped manifold assembly from box.
 - a) Remove manifold assembly from anti-static packaging
 - b) Retain documentation for installation and configuration
- 3) Examine manifold assembly for any shipping damage such as:
 - a) Bent pins or connectors
 - b) Report any damage to shipping carrier immediately
- 4) Examine manifold assembly for proper ordered configuration. (Valves, I/O, Protocol, etc.)

2) G2-2 Introduction

Below is an example of a 2012 series valve manifold. This fieldbus manifold series is capable of addressing a total of 224 I/O. The manifold can be viewed as having two sections to it, the *Valve Side* and the *Discrete I/O Side*. The *Valve Side* supports a maximum of 32 solenoid coils and the *Discrete I/O Side* supports a maximum of 6 modules totaling 192 Outputs, 96 Inputs, or various combinations. The communication module has a RJ45 communication connector. The power module has a 4-pin power connector. Pin-outs for these, along with I/O connectors, are labeled on the side of the respective modules.

3835056 TDG22ENQS2-0 1/07 Subject to change without notice

www.numatics.com/fieldbus

3) EtherNet/IPTM and Modbus TCP Communication Module Part Numbers

EtherNet/IPTM and Modbus TCP Communication Replacement Part Numbers

Connector Type	Description	Part Number
	Complete Module	239-2037
	Communication Board	256-846
IP20 RJ45	Auxiliary Power Board	256-848
Connector	Valve Driver Board	256-680
	4 Amp Fuse	140-933
	10 Amp Fuse	140-934
	Complete Module	239-2342
	Communication Board	256-846
IP67 RJ45	Auxiliary Power Board	256-848
Connector	Valve Driver Board	256-680
	4 Amp Fuse	140-933
	10 Amp Fuse	140-934

4) <u>MCM - Manual Configuration Module (Optional)</u>

All DIP switches shown in the "OFF" position

The MCM is the module that allows the user to manually enable user definable options such as self test mode, bit mapping offset (Modbus TCP ONLY) and byte swapping (Modbus TCP ONLY), without the need for software configuration. If software configuration is preferred, this module is not necessary. The MCM consists of two DIP switch sets (SW1 and SW2) and two rotary switches (SW3 and SW4).

MCM Module Part Numbers

Description	Part Number
Complete Module	239-1384
Replacement Board	256-684

MCM Settings (Modbus TCP ONLY)

DIP Switch Settings (SW1)

Offset:

Switch	Setting	Description
SW1-7	Off*	Enable Output offset of 400 hex or 1024 dec (Some software programs deal with a pre-determined offset for the Output data table. This setting allows the user to work with the offset.)
SW1-7	On	Disable Output offset. (This setting allows the user to disregard the offset.)

Bit swap:

Switch	Setting	Description
SW1-8	Off*	Disable I/O bit stream swapping (Some software programs reverse the way the I/O bits are presented to the node and thus the bit mapping may be reversed or swapped from the expected mapping scheme.)
SW1-8	On	Enable I/O bit stream swapping

*Factory Default Settings

DIP Switch Settings (SW2) - No Function

Rotary Switch Settings (SW3 and SW4) - No Function

5) Self-Test Mode

An internal diagnostic tool can also be enabled using the optional MCM module. This tool allows the user to confirm that all of the Inputs and Outputs on the manifold are fully functional without needing a network connection or controller. There are two test modes that the user can choose using SW2-8. The "Output" test mode tests all the outputs by sequentially turning them ON one at a time. The "Input/Output" test mode tests the inputs by causing all of the outputs to toggle between even and odd values when any input is made.

To use the Self-Test Mode, the user must first set some initial conditions using the MCM module. Follow these steps to obtain the needed initial condition settings. Remember to remove power from the manifold before making changes to the MCM when setting these initial conditions.

1) Disconnect power and air from the manifold!

- 2) Record current MCM settings.
- 3) Set the rotary switches to 99 (SW3 and SW4).
- 4) Make sure that SW1-5, SW2-1, and SW2-7 are in the "ON" position.
- 5) Select the desired test mode with SW2-8 (see table below)

Switch	Testing Mode	Setting	Description
	Output	Off	Sequentially turns all the outputs ON and OFF.
SW2-8	Input/ Output	On	Causes all of the odd outputs to come on and stay on until an input is made. When an input is made, the outputs will toggle to the even outputs.

6) Make sure that all of the other switches are in the "OFF" position.

The initial conditions are now set. To enable the Self-Test Mode, apply power to the manifold and make the following changes within 5 to 10 seconds:

- 1) Set SW2-6 to the "ON" position.
- 2) Set SW2-7 to the "OFF" position.

Self-Test Mode is terminated by removing power to the unit. Remember to return the MCM settings to their original settings to return the communication node to normal operation.

Air should be disconnected to the manifold when attempting to run the Self-Test Mode to prevent unwanted motion. Communication lines should be disconnected before attempting to run the Self-Test Mode.

G2-2 Series EtherNet/IPTM and Modbus TCP **Quick Start Manual**

6) I/O Mapping Example

Example:

Assumed Settings

- Single Z-BoardsTM used with single solenoid valves
- Double Z-BoardsTM used with double solenoid valves

Pos	Module Type	Part No.	In	Out	
No.	Module Type	1 alt 1 VO.	Bytes		
1	MCM	239-1384			
2	80 Sourcing (PNP)	239-1315	1	1	
3	16O Sourcing (PNP)	239-1319	1	2	
4	4I Sinking (NPN)	239-1304	1	0	
5	8I Sinking (NPN)	239-1308	1	0	

Manifold I/O Configuration

Outputs and Mapping Location					
Valve Outputs = 12	Byte 0; Bits 0-7				
Allocated Unused	Byte 1; Bits 4-7				
Valve Outputs = 20	Bytes 2 - 3; Bits 0-7				
Discrete Outputs = 24	Bytes 4,5 and 6; Bits 0-7				
Total Outputs = 56					

Inputs and Mapping Location					
Discrete Inputs = 12	Byte 6; Bits 0-3,				
Discrete inputs = 12	Byte 7; Bits 0-7				
Allocated and	Barta (, Bita 47				
Reserved Inputs = 4	Dyte 0; Dits 4-7				
Total Inputs = 16					

3835056 TDG22ENQS2-0 1/07Subject to change without notice

Discrete I/O Configuration

I/O Mapping Table Example Continued

Output Table								
BYTE	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Valve Coil	Valve Coil	Valve Coil					
	No. 8	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1
1	Allocated &	Allocated &	Allocated &	Allocated &	Valve Coil	Valve Coil	Valve Coil	Valve Coil
	Reserved	Reserved	Reserved	Reserved	No. 12	No. 11	No. 10	No. 9
2	Allocated &	Allocated &	Allocated &					
	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
3	Allocated &	Allocated &	Allocated &					
	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
4	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
	Output No. 7	Output No. 6	Output No. 5	Output No. 4	Output No. 3	Output No. 2	Output No. 1	Output No. 0
5	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
	Output No. 7	Output No. 6	Output No. 5	Output No. 4	Output No. 3	Output No. 2	Output No. 1	Output No. 0
6	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
	Output No. 15	Output No. 14	Output No. 13	Output No. 12	Output No. 11	Output No. 10	Output No. 9	Output No. 8

Input Table								
BYTE	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Coil No. 8	Coil No. 7	Coil No. 6	Coil No. 5	Coil No. 4	Coil No. 3	Coil No. 2	Coil No. 1
0	Status							
1	Coil No. 16	Coil No. 15	Coil No. 14	Coil No. 13	Coil No. 12	Coil No. 11	Coil No. 10	Coil No. 9
1	Status							
2	Coil No. 24	Coil No. 23	Coil No. 22	Coil No. 21	Coil No. 20	Coil No. 19	Coil No. 18	Coil No. 17
2	Status							
3	Coil No. 32	Coil No. 31	Coil No. 30	Coil No. 29	Coil No. 28	Coil No. 27	Coil No. 26	Coil No. 25
5	Status							
							Status for	Status for
4	Allocated &	Discrete	Discrete					
7	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Outputs	Outputs
							No. 4-7	No. 0-3
					Status for	Status for	Status for	Status for
5	Allocated &	Allocated &	Allocated &	Allocated &	Discrete	Discrete	Discrete	Discrete
5	Reserved	Reserved	Reserved	Reserved	Outputs	Outputs	Outputs	Outputs
					No. 12-15	No. 8-11	No. 4-7	No. 0-3
6	Allocated &	Allocated &	Allocated &	Allocated &	Discrete	Discrete	Discrete	Discrete
0	Reserved	Reserved	Reserved	Reserved	Input No. 3	Input No. 2	Input No. 1	Input No. 0
7	Discrete							
/	Input No. 7	Input No. 6	Input No. 5	Input No. 4	Input No. 3	Input No. 2	Input No. 1	Input No. 0

This example supports Modbus TCP function codes: "Write Multiple Registers" (FC 16) and "Read Multiple Registers" (FC 03).

3835056 TDG22ENQS2-0 1/07 Subject to change without notice

G2-2 Series EtherNet/IPTM and Modbus TCP Quick Start Manual

I/O Mapping Table Example (Modbus TCP ONLY-Bit Reversal) Continued

Output Table								
BYTE	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
0	Valve Coil	Valve Coil	Valve Coil					
	No. 8	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1
1	Allocated &	Allocated &	Allocated &	Allocated &	Valve Coil	Valve Coil	Valve Coil	Valve Coil
	Reserved	Reserved	Reserved	Reserved	No. 12	No. 11	No. 10	No. 9
2	Allocated &	Allocated &	Allocated &					
	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
3	Allocated &	Allocated &	Allocated &					
	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
4	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
	Output No. 7	Output No. 6	Output No. 5	Output No. 4	Output No. 3	Output No. 2	Output No. 1	Output No. 0
5	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
	Output No. 7	Output No. 6	Output No. 5	Output No. 4	Output No. 3	Output No. 2	Output No. 1	Output No. 0
6	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
	Output No. 15	Output No. 14	Output No. 13	Output No. 12	Output No. 11	Output No. 10	Output No. 9	Output No. 8

Input Table								
BYTE	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
0	Coil No. 8	Coil No. 7	Coil No. 6	Coil No. 5	Coil No. 4	Coil No. 3	Coil No. 2	Coil No. 1
U	Status							
1	Coil No. 16	Coil No. 15	Coil No. 14	Coil No. 13	Coil No. 12	Coil No. 11	Coil No. 10	Coil No. 9
1	Status							
2	Coil No. 24	Coil No. 23	Coil No. 22	Coil No. 21	Coil No. 20	Coil No. 19	Coil No. 18	Coil No. 17
2	Status							
3	Coil No. 32	Coil No. 31	Coil No. 30	Coil No. 29	Coil No. 28	Coil No. 27	Coil No. 26	Coil No. 25
5	Status							
							Status for	Status for
4	Allocated &	Discrete	Discrete					
7	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Outputs	Outputs
							No. 4-7	No. 0-3
					Status for	Status for	Status for	Status for
5	Allocated &	Allocated &	Allocated &	Allocated &	Discrete	Discrete	Discrete	Discrete
5	Reserved	Reserved	Reserved	Reserved	Outputs	Outputs	Outputs	Outputs
					No. 12-15	No. 8-11	No. 4-7	No. 0-3
6	Allocated &	Allocated &	Allocated &	Allocated &	Discrete	Discrete	Discrete	Discrete
0	Reserved	Reserved	Reserved	Reserved	Input No. 3	Input No. 2	Input No. 1	Input No. 0
7	Discrete							
/	Input No. 7	Input No. 6	Input No. 5	Input No. 4	Input No. 3	Input No. 2	Input No. 1	Input No. 0

This example supports Modbus TCP function codes: "Write Coil" (FC 05) or "Force Multiple Coils" (FC 15) and "Read Coils" (FC 01) or "Read Input Discrete" (FC 02).

3835056 TDG22ENQS2-0 1/07 Subject to change without notice

7) Output Short Circuit Protection (Status Input Bits)

Status Input Bits report the integrity of the load being driven by the output driver. They must be mapped to the scanner as part of the Input Size Value. Please refer to the table below for Status Input Bit action during fault condition:

Output Type	Output State	Fault Condition	Status Bit			
	ON	No Fault	0			
Valve Solenoid Coll Driver or Sinking (NIDNI)	UN	Fault - Short Circuit, Over Temp/Over Current	1			
Discrete Outputs	OFF	No Fault	0			
Discrete Outputs	UIT	Fault - Open Load				
Sourcing (PNP)	ON	No Fault	0			
Discrete Outputs	UN	Fault - Short Circuit, Over Temp/Over Current	1			

8) Ground Wiring

All Numatics Inc. communication nodes should be grounded during the installation process. These grounding guidelines can be found in National Electrical code IEC 60204-1 or EN 60204-1. There also is a, "ATTENTION: CONNECT TO EARTH GROUND FOR PROPER GROUNDING OF UNIT", label attached to the chassis ground connection point on the G2-2 series communication node housing. This label also points out where the grounding guidelines can be found.

Chassis Ground Connection Point

with network communication.
When grounding to a machine frame, please ensure that the machine frame itself is already properly grounded.
Better grounding can be achieved when larger diameter (lower gauge) wire

Proper grounding will alleviate and prevent many intermittent problems

is used.

3835056 TDG22ENQS2-0 1/07 Subject to change without notice

www.numatics.com/fieldbus

9) Auxiliary Power Connector Pin-Out

Pin No.	Function	Description
1	+24VDC	Voltage Used to Power Outputs
1	(Valves and Outputs)	(Valve Coils and Discrete Outputs)
2	Earth Ground	Protective Earth (Case Ground)
3	0VDC Common	0VDC Common, for Valves, I/O, and Node Power
4	+24VDC Velters Used to Berry Discuste Insute and New	
4	(Node and Inputs)	voltage Used to Fower Discrete Inputs and Node Electronics

Pin-Out

Aux. - MINI

Maximum current capacity on the 0VDC common pin of the auxiliary power connector is 8 Amps. The combined draw of the +24VDC Valves and Outputs and +24VDC Node and Inputs pins cannot exceed 8 Amps, at any given moment in time. The auxiliary power +24VDC Node and Inputs pin supplies power to the

The auxiliary power +24VDC Node and Inputs pin supplies power to the node electronics. This pin must be powered at all times for communication node to be functional.

G2-2 Series EtherNet/IPTM and Modbus TCP Quick Start Manual

10) Power Consumption

Auxiliary Power Connection (Standard)

Aux. Power Connector Pin No.	Description
1	24 VDC Power for Valves & Discrete Outputs
4	24 VDC Power for Inputs & Node Electronics

Discrete I/O Module(s) Power Jumper

All of Numatics, Inc., G2-2 I/O modules have a selectable power source jumper. This jumper determines which Aux. Power connector pin will power these modules.

This option allows the user to select how each specific module will be powered during different conditions (i.e. E-Stop). Each I/O module can be set-up independently allowing individual Output and/or Input modules to remain active if needed.

Power Rating

Maximum system current capability is <u>8 amps</u>. Care should be taken not to exceed 8 amp draw through the 0VDC common pin (Current through all +24 VDC Pins combined).

Discrete I/O current draw is dependent on the device(s) connected. It is critical to know what these values are in order to remain safely within the 8 amp limitation.

Loads should not draw more than 0.5 amps of current from any one individual discrete output point. (Contact factory for higher current capabilities)

Auxiliary Power Connector	Voltage	Tolerance	Current	Power
+24VDC (Valves & Outputs)				
Solenoid Valve Coil 2005 (Each)	24VDC	+10%/-15%	0.042 A	1.0 Watts
Solenoid Valve Coil 2012 (Each)	24VDC	+10%/-15%	0.105 A	2.5 Watts
Solenoid Valve Coil 2035 (Each)	24VDC	+10%/-15%	0.105 A	2.5 Watts
Solenoid Valve Coil ISO - SPA (Each)	24VDC	+10%/-15%	0.160 A	4.0 Watts
Discrete Output	24VDC	-	0.5 A max. *	12 Watts max. *
Discrete I/O Status LEDs (Each)	24VDC	-	0.015 A	0.36 Watts
+24VDC (Node & Inputs)				
Node	24VDC	+/- 10%	0.040 A	0.96 Watts
Discrete I/O Module (Each)	24VDC	-	0.006 A	0.14 Watts
Discrete I/O Status LEDs (Each)	24VDC	-	0.015 A	0.36 Watts

Power consumption for each Discrete I/O point is dependent on the specific current draw of input sensor devices and output loads. Please consult the factory for output current requirements greater than 0.5 amps.

Recommended External Fuses:

External fuses should be chosen based upon the physical manifold configuration. Please refer to the next page for the fuse sizing chart.

3835056 TDG22ENQS2-0 1/07 Subject to change without notice

11) Power Consumption and External Sizing Guide Chart

Power Consumption - Aux. Power Connector Pin for Valves and Outputs		
Description		<u>Current</u>
Number of Solenoid Valve Coils Energized Simultaneously		
X 0.105 A (2012 and 2035 Series)	=	Amps
X 0.042 A (2005 Series)	=	Amps
(,		+
Total load current drawn by simultaneously energized Discrete Outputs	_	Amps
with Discrete Outputs Power Jumper in "SP" Position (Factory Default).	-	+
Total load current drawn by Sensor Devices from Discrete Inputs source	=	Amps
with Discrete Input Power Jumper in "SP" Position.		
Total:		Amps
Surge Compensation:	Х	1.25
Suggested External +24 VDC (Valves and Outputs) Fuse Value:		Amps
Power Consumption - Aux. Power Connector Pin for Node and Inputs		
Description		<u>Current</u>
Communication Node Power Consumption	=	.040 Amps
		+
Total load current drawn by simultaneously energized Discrete Outputs	=	Amps
with Discrete Outputs Power Jumper in "UP" Position.		+
Total load current drawn by Sensor Devices from Discrete Inputs source	=	+ Amps
Total load current drawn by Sensor Devices from Discrete Inputs source with Discrete Inputs Power Jumper in "UP" Position (Factory Default).	=	+ Amps +
Total load current drawn by Sensor Devices from Discrete Inputs source with Discrete Inputs Power Jumper in "UP" Position (Factory Default).	=	+ Amps +
Total load current drawn by Sensor Devices from Discrete Inputs source with Discrete Inputs Power Jumper in "UP" Position (Factory Default). Number of I/O modules installed X 0.006 A	=	+ Amps + Amps
Total load current drawn by Sensor Devices from Discrete Inputs source with Discrete Inputs Power Jumper in "UP" Position (Factory Default). Number of I/O modules installed X 0.006 A	= =	+ Amps + Amps +
With Discrete Outputs Power Jumper in "UP" Position. Total load current drawn by Sensor Devices from Discrete Inputs source with Discrete Inputs Power Jumper in "UP" Position (Factory Default). Number of I/O modules installed X 0.006 A Number of Discrete I/O Status LEDs simultaneously on X 0.015 A	= = =	+ Amps + Amps + Amps
with Discrete Outputs Power Jumper in "UP" Position. Total load current drawn by Sensor Devices from Discrete Inputs source with Discrete Inputs Power Jumper in "UP" Position (Factory Default). Number of I/O modules installed X 0.006 A Number of Discrete I/O Status LEDs simultaneously on X 0.015 A Total:	= = =	+ Amps + Amps Amps
With Discrete Outputs Power Jumper in "UP" Position. Total load current drawn by Sensor Devices from Discrete Inputs source with Discrete Inputs Power Jumper in "UP" Position (Factory Default). Number of I/O modules installed X 0.006 A Number of Discrete I/O Status LEDs simultaneously on X 0.015 A Total: Surge Compensation:	= = = X	+ Amps + Amps Amps 1.25

The standard power jumper configuration for all Output Modules is "SP".

The standard power jumper configuration for all Input Modules is "UP".

At any given moment in time, the <u>combined</u> current draw through +24VDC (Valves & Outputs) pin <u>and</u> +24VDC (Node & Inputs) pin cannot exceed 8 amps. Therefore, the combined value of the external fuses on the two +24VDC pins should not exceed 8 amps.

The internal fuses are installed to protect against fire damage due to catastrophic failure of internal components. External fuses are recommended for protection against power supply failure, over-current conditions, etc...

NDTE

3835056 TDG22ENQS2-0 1/07 Subject to change without notice

www.numatics.com/fieldbus

12) LED Functions

numatics

Upon power up, the LEDs indicate the status of the unit. The Power Module of the G2-2 EtherNet/IPTM and Modbus TCP node has four LEDs; two for internal fuse integrity and two for Aux. Power status. The Communication module also has four status LEDs which are described below.

Communication Module

LED Name	Color	Status	Description
	Off	OFF	No power applied to module
	Green	ON	Device operational. The module is operating correctly.
MOD. STAT.	Ulteri	FLASHING	Standby. The module has not been configured.
(Module Status)	Red	ON	Major fault. A major internal error has been detected.
	Reu	FLASHING	Minor fault. A minor recoverable fault has been detected.
	Green Red	FLASHING	Self-test. The module is performing a power on self-test.
	Off	OFF	IP address has been not been assigned to node. Or no power applied to
	UII	OFF	unit.
	Green	ON	Connected. The module has established an EtherNet/IP connection.
		FI ASHING	No connection. There are no EtherNet/IP connections established to
NET. STAT.		TLASIIINO	the module.
(Network Status)		ON	Duplicate IP address. The module has detected that its IP address is
	Red	UIV	already being used elsewhere on the network
	neu	FLASHING	EtherNet/IP connection has timed out. One or more of the
		TLASIIINU	connections for which this module is the target has timed out.
	Green Red	FLASHING	Self-test. The module is performing a power on self-test.
I INK	Green	OFF	No Ethernet connection is detected
	Gitti	ON	The module is connected to an EtherNet network
ACTIVE	Green	FLASHING	The LED flashes each time a packet is received or transmitted.

Power Module

I ower miodate			
LED Name	Color	Status	Description
		OFF	Internal fuse F1 is OK (valid only when power is applied to
FUSE 1	Red		$+24V_{VLV/OUT}$ pin on Aux. Power connector).
I USE I	Kcu	ON	Internal fuse F1 is open; No power is internally provided to valves or
		011	outputs. Communication NOT affected.
+24V VI V/OUT	Green	OFF	No DC Power present at +24V VLV / OUT pin on Aux. Power connector.
+24V VLV/001		ON	DC Power applied to +24V _{VLV/OUT} pin on Aux. Power Connector.
	Red	OFF	Internal fuse F2 is OK (valid only when power is applied to
FUSE 2		OFF	+24V _{NODE / IN} pin on Aux. Power connector.
103E 2		ON	Internal fuse F2 is open; No power is internally provided to node
			electronics or inputs. Communication Node will not function.
+24V NODE /IN	Green	OFF	No DC Power present at $+24V_{NODE/IN}$ pin on Aux. Power connector.
124V NODE/IIN	Green	ON	DC Power applied to $+24V_{NODE/IN}$ pin on Aux. Power connector.

3835056 TDG22ENQS2-0 1/07 Subject to change without notice

13) Modbus/TCP Function Codes

This communication module supports the Modbus/TCP protocol based on the 1.0 version of the specification. This communication module can handle up to 8 simultaneous connections.

Supported Commands:

Function Code	Function Name	Class	Affects Area
01	Read Coils	1	IN / OUT
02	Read Input Discrete	1	IN / OUT
03	Read Multiple Registers	0	IN / OUT
04	Read Input Registers	1	IN / OUT
05	Write Coils	1	OUT
06	Write Single Register	1	OUT
07	Read Exception Status	1	OUT
15	Force Multiple Coils	2	OUT
16	Write Multiple Registers	0	
22	Mask Write Register	2	OUT
23	Read/Write registers	2	IN & OUT

Modbus/TCP Addressing:

Modbus Memory Area (Decimal)	Туре	Applicable Function Code (FC)	Numatics Node Memory Area (Decimal)	Total I/O Size	Addressing Method	Bit Reversal
0 - 9999 Ou		05	16384 - 16704	320	Bit	Yes
	Output	15	16384 - 16424	40	Byte	Yes
		16	1024 - 1044	20	Word	No
10000 - 19999 I		01	0 - 320	320	Bit	Yes
	Input	02	0 - 320	320	Bit	Yes
		03	0 - 20	20	Word	No

14) IP Address Configuration

The IP address of the Numatics G2-2 Ethernet node may be configured via several different methods: DHCP/ BOOTP Manual Configuration via DIP switch Integrated Web Page Configuration ARP/PING command

A.) DHCP/BOOTP

The node is shipped from the factory with DHCP/BOOTP feature enabled. This allows a DHCP server to automatically set the IP address to the node when connected to the network, or a BOOTP server to establish communication to the node and set the IP address. These addressing methods require that the unique MAC ADDRESS of the node is known. The MAC ADDRESS can be found on the label located on the node cover (see above). It will be different for every node. When DHCP/BOOTP is enabled and a DHCP server is found, the IP address, Subnet mask, and gateway are automatically configured by the DHCP server.

BOOTP/DHCP Serve	r 2.3			
Request History Clear History Add	o Relation List			
(hr.min.sec) Type 10:07:41 DHCP 10:07:41 DHCP	Ethernet Address (MAC) 00:11:25:45:15:2D 00:11:25:45:15:2D	IP Address	Hostname	
Relation List New Delete Enab	le BOOTP Enable DHCP Dir	sable BOOTP/DHCP	Description	
Status Unable to service DHCP re	equest from 00:11:25:45:15:2D.			Entries 0 of 256

The DHCP/ BOOTP setting can be enabled or disabled via the nodes integrated web server. Simply log on to the node with any web browser and go to the configuration page.

B.) Manual Configuration DIP switch

The manual configuration DIP switch provides an easy way to configure the node's IP address. The switch represents the binary value of the last octet in the IP address. When all switches are set to OFF, it is disabled and other means of setting the address must be used. DIP switch configuration settings require power to be cycled before changes take effect.

IP address:	192.168.0. <mark>X</mark>
Subnet Mask	255.255.255.0
Gateway address:	0.0.0.0 (no gateway set)

X =	DIP	switch	setting	per	the	tab	le	below	
------------	-----	--------	---------	-----	-----	-----	----	-------	--

27=128	26=64	25=32	24=16	23=8	22=4	21=2	20=1	Octet Value
SW-8	SW-7	SW-6	SW-5	SW-4	<i>SW-3</i>	SW-2	SW-1	(Decimal)
OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	*0
OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	1
OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	2
OFF	OFF	OFF	OFF	OFF	OFF	ON	ON	3
OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	4
OFF	ON	ON	ON	ON	OFF	OFF	OFF	120
ON	ON	ON	ON	ON	ON	OFF	ON	253
ON	ON	ON	ON	ON	ON	ON	OFF	254
ON	ON	ON	ON	ON	ON	ON	ON	Not Valid

*Not valid for fourth octet

C.) Web Page Configuration

The Numatics G2-2 Ethernet node has an imbedded web server. This server can be accessed via any standard web browser program. If the IP address of the node is known, the "Node Configuration Page" for the node can be called up and the configuration parameters updated. If the IP address of the node is not known, it can be set using any of the previously described methods. Please note that the PC, where the web browser is installed, must be correctly configured for operation with the appropriate network IP ranges and Subnet settings that match the G2-2 Ethernet node. Consult appropriate personnel before changing your computer's network settings and always record previous settings before attempting changes!

Below is a representation of the "Node Configuration Page" which is stored in the Ethernet node. IP address, Subnet Mask, Gateway Address, SMTP server address and DHCP/BootP enabled selections can all be configured from this page. These parameters will be programmed in the node's non-volatile FLASH memory once "UPDATE CONFIG." is clicked.

Modifications to the *Configuration Page* settings require power to be cycled before changes take effect.

Numatics Incorporated G2-2 Series EtherNet 10/100 Mbit/s Node Configuration Page					
IP Address:	192.168.3.120				
Subnet Mask:	255.255.255.0				
Gateway Address:	0.0.0.0.				
SMTP server:	0.0.0.0.				
DHCP/BOOTP enabled:					
UPDATE CONFIG					

D.) ARP/PING Command

ARP (Address Resolution Protocol) and PING are DOS commands that can be used to set an IP address. This will require a PC equipped with an Ethernet Network Interface Card (NIC). The IP address will be stored in the node's non-volatile FLASH memory after it is set. No power cycle is necessary. Follow these steps to configure an IP address using the ARP/PING commands.

1) Use the ARP-s command to configure the IP address from a DOS window.

arp -s <IP address> <MAC address>

Where: <IP address> is the IP address that the node is to be set to <MAC address> is the unique MAC address of the node where the IP address is to be set (see label on cover)

Example: arp -s 192.168.6.35 00-15-24-00-00-38

2) Use the PING command to send the IP address to the node.

ping <IP address>

Where: <IP address> is the IP address that was previously used in the "arp -s" command.

Example: ping 192.168.6.35

3) Use the ARP-d command to remove the static entry from the PC ARP table.

arp –d

Example: arp -d

The ARP command automatically configures the subnet mask to 255.255.255.0 (thus the first three octets of the IP address will be the same as the PC executing the command). When the ARP and PING commands are used, the DHCP/BOOTP is disabled.

The parameters set in the node are programmed in non-volatile FLASH memory. They will NOT be lost during loss of power.

3835056 TDG22ENQS2-0 1/07 Subject to change without notice

www.numatics.com/fieldbus

15) EtherNet/IP[™] Configuration with RSLOGIX 5000

When commissioning your EtherNet/IP[™] network, specific values must be entered in the "Connection Parameters" section for the "Assembly Instance" column with regards to "Input Size", "Output Size", and "Configuration". The "Size" values are determined from the actual physical configuration of the manifold (i.e. how many and which I/O modules are installed on the manifold). The size values are a minimum value; higher values can be used if future manifold I/O expansion is required. Below is a sample screen shot taken from Allen Bradley's RSLogix 5000 programming software, it shows where the appropriate values for the *IP Address, Assembly Instance, Size* and *Configuration* must be entered.

	Module Properties - EtherNet_gateway (ETHERNET-MODULE 1.1)	×
Controller Tags Controller Fault Handler Controller Fault Handler Power-Up Handler Casks	Type: ETHERNET-MODULE Generic Ethernet Module Vendor: Allen-Bradley Parent: EtherNet_gateway Name: Numatics Description: G2-2 fieldbus manifold G2-2 fieldbus manifold Input: 100 8	
Image: Second system Image: Second system <td>Comm Format: Data - SINT Comm Format: Data - SINT Address / Host Name Configuration: Image: Provide the structure Image: Provide the structure Image: Provide the structure Status Input: Image: Provide the structure Status Output: Image: Provide the structure Status Output:</td> <td>_</td>	Comm Format: Data - SINT Comm Format: Data - SINT Address / Host Name Configuration: Image: Provide the structure Image: Provide the structure Image: Provide the structure Status Input: Image: Provide the structure Status Output: Image: Provide the structure Status Output:	_

Module Properties

Comm. Format:

Description	Data		
Comm. Format	"Data – SINT"		

Connection Parameters:

Description	Assembly Instance Values	Size (8 Bits=1 Byte)	
		Total Input Bytes value (in bytes) from manifold	
Input	100 (Decimal) or	configuration (including status Input bits). This	
Input	64 (Hexadecimal)	is a minimum value; larger values may be	
		specified for future expansion purposes.	
		Total Output Bytes value (in bytes) from manifold	
Output	150 (Decimal) or	configuration. This is a minimum value; larger	
Output	96 (Hexadecimal)	values may be specified for future expansion	
		purposes.	
Confirmation	1 (Decimal) or	0	
Configuration	1 (Hexidecimal)	0	

3835056 TDG22ENQS2-0 1/07 Subject to change without notice

16) Factory Default Settings

Unless otherwise requested, all standard G2-2 Series Ethernet manifolds ship with specific factory default settings. Below is a list of the factory default settings:

Description	Default Settings		
IP address	DHCP/ BOOTP Enabled (192.168.3.120 in FLASH)		
MAC Address	A unique alpha-numeric code for each node (00-30-11-XX-XX-XX).		
MAC Address	Located on the cover of the EtherNet/IP [™] node. (Not user configurable)		
Baud Rate	10/100 Mbit per sec. (Autobaud)		
DHCP/BOOTP	Enabled		
Input Module Power Jumper	PU (Input sensor power supplied by +24VDC Node and Inputs pin on the Aux. power connector)		
Output Module Power Jumper	SP (Output module power supplied by +24VDC Valves and Outputs pin on the Aux. power connector)		
Valve Side Output Bytes	4 Bytes (32 Allocated Valve Coil Outputs)		
Discrete I/O Side - I/O Bytes	Self-Configuring based on the I/O modules installed.		

17) <u>Technical Support</u>

For technical support, contact your local Numatics distributor. If further information is required, please call Numatics Inc. at (248) 887-4111 and ask for Technical Support.

Issues relating to network set-up, PLC programming, sequencing, software related functions, etc... should be handled with the appropriate product vendor.

Information on device files, technical manuals, local distributors, and other Numatics, Inc. products and support issues can be found on the Numatics, Inc's. WEB site at <u>www.numatics.com</u>

For general help or more information regarding Industrial Ethernet protocol, please see the following appropriate web pages:

ODVA - www.odva.org

The following is a trademark used under license by ODVA: EtherNet/IP™

3835056 TDG22ENQS2-0 1/07 Subject to change without notice

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

Pour commencer

Ce document décrit le démarrage rapide de votre îlot de distribution à nœud de communication EtherNet/IPTM ou Modbus TCP série G2-2 intégré.

1) Déballage et inspection

- 1) Inspectez l'emballage extérieur pour détecter tout dommage. Tout dommage constaté doit être signalé au transporteur.
- 2) Retirez l'ensemble de l'îlot de son carton.
 - a) Sortez l'ensemble de son emballage anti-statique.
 - b) Conservez la documentation portant sur l'installation et la configuration.
- 3) Inspectez l'ensemble de l'îlot pour détecter tout dommage de transport tel que:
 - a) Broches ou connecteurs déformés.
 - b) Tout dommage constaté doit être immédiatement signalé au transporteur.
- 4) Vérifiez que la configuration de l'ensemble de l'îlot livré correspond à votre commande. (distributeurs, E/S, protocole, ...).

2) Introduction à la série G2-2

Ci-dessous un exemple représentant l'ensemble d'un îlot de distributeurs de la série 2012. Cette série d'îlots à bus de terrain est capable d'adresser un total de 224 E/S. L'îlot peut être considéré comme ayant deux parties : la partie *Composants pneumatiques* et la partie *Composants électroniques*. La partie Composants pneumatiques et la partie *Composants électroniques*. La partie Composants pneumatiques et la partie *Composants électroniques*. La partie Composants pneumatiques supporte un maximum de 32 bobines et la partie Composants électroniques supporte un maximum de 6 modules, donc un total de 192 sorties, 96 entrées ou de différentes combinaisons de celles-ci. Le module de communication est équipé d'un connecteur de communication du type RJ45. Le module d'alimentation en tension est équipé d'un connecteur d'alimentation à 4 broches. L'affectation des broches ainsi que les connecteurs E/S sont repérés sur la face latérale de chaque module.

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

3) <u>Codes des composants du module de communication EtherNet/IPTM et Modbus</u> <u>TCP</u>

Codes des composants de communication de rechange EtherNet/IPTM et Modbus TCP

<i>Type de connecteur</i>	Description	Code
	Module complet	239-2037
	Carte électronique de communication	256-846
Connecteur	Carte électronique d'alimentation auxiliaire	256-848
IP20 RJ45	Carte de pilotage distributeurs	256-680
	Fusible 4A	140-933
-	Fusible 10A	140-934
	Module complet	239-2342
	Carte électronique de communication	256-846
Connecteur	Carte électronique d'alimentation auxiliaire	256-848
IP67 RJ45	Carte de pilotage distributeurs	256-680
	Fusible 4A	140-933
	Fusible 10A	140-934

numatics

NUMATICS Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

4) MCM – Module de configuration manuelle (option)

Le MCM (module de configuration manuelle) permet à l'utilisateur de configurer les options définissables par l'utilisateur tels que le mode auto test, Bit Mapping Offset *(décalage de mapping de bits)* (Modbus TCP UNIQUEMENT) et Byte Swapping *(conversion d'octets)* (Modbus TCP UNIQUEMENT), sans besoin de logiciel de configuration. <u>Ce module n'est pas nécessaire si l'on préfère la configuration par logiciel.</u> Le MCM est équipé de deux ensembles de DIP switchs (SW1 et SW2) et de deux roues codeuses (SW3 et SW4).

Codes des composants du module MCM

Description	Code
Module complet	239-1384
Carte de rechange	256-684

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

Réglages MCM (Modbus TCP UNIQUEMENT)

Réglages des DIP switchs (SW1)

Offset (décalage):

Switch	Réglage	Description
SW1-7	Off*	Activer le décalage de sortie de 400 hex ou 1024 déc (certaines logiciels traitent un décalage prédéterminé pour le tableau de données de sorties. Ce réglage permet à l'utilisateur de travailler avec le décalage).
SW1-7	On	Désactiver le décalage de sortie. Ce réglage permet à l'utilisateur d'ignorer le décalage).

Bit swap (conversion de bits) :

Switch	Réglage	Description
SW1-8	Off*	Désactiver I/O bit stream swapping <i>(conversion de la chaîne de bits E/S)</i> (Certains logiciels inversent la manière dont les bits E/S sont présentés au nœud et le mapping des bits peut ainsi être inversé ou converti du schéma de mapping attendu).
SW1-8	On	Activer I/O bit stream swapping <i>(conversion de la chaîne de bits E/S)</i> .

*Réglage usine

Réglages des DIP switchs (SW2) - sans fonction

Réglages des roues codeuses (SW3 et SW4) - Sans fonction

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

5) Mode auto-test

Un outil diagnostic interne peut également être activé par le module MCM optionnel. Cet outil permet à l'utilisateur de s'assurer que toutes les entrées et sorties sur l'îlot sont complètement opérationnelles, sans besoin de connexion réseau, ni de contrôleur. Le switch SW2-8 permet à l'utilisateur de choisir entre deux modes test. Le mode test "Entrée/Sortie" teste les entrées de sorte que toutes les sorties commutent entre les valeurs paires et impaires lorsqu'un signal d'entrée est appliqué.

Pour utiliser le mode auto-test, l'utilisateur doit, tout d'abord, paramétrer quelques conditions initiales au moyen du module MCM. Suivre les étapes suivantes pour obtenir les réglages des conditions initiales requises. Lors du paramétrage des conditions initiales, n'oubliez pas de couper l'alimentation électrique de l'îlot avant d'effectuer les modifications sur le MCM.

1) Couper l'alimentation électrique et pneumatique de l'îlot!

- 2) Enregistrez les réglages actuels du MCM.
- 3) Positionnez les roues codeuses sur 99 (SW3 et SW4).
- 4) Assurez-vous que les switchs SW1-5, SW2-1 et SW2-7 sont sur la position "ON".
- 5) Sélectionnez le mode test désiré à l'aide du switch SW2-8 (voir le tableau ci-dessous).

Switch	Mode test	Réglage	e Description	
SW2-8	Sortie	Off	Les sorties sont successivement mises sous tension (ON), puis hors tension (OFF).	
	Entrée/ Sortie	On	Les sorties impaires sont mises sous tension et restent sous tension jusqu'à ce qu'un signal d'entrée est appliqué. Lorsqu'un signal d'entrée est appliqué, les sorties commutent sur les sorties paires.	

6) Assurez-vous que tous les autres switchs sont sur la position "OFF".

Le réglage des condition initiales est alors terminé. Pour activer le mode auto-test, mettez l'îlot sous tension et faites les modifications suivantes pendant les premières 5 à 10 secondes :

- 1) Placez le switch SW2-6 sur la position "ON".
- 2) Placez le switch SW2-7 sur la position "OFF".

Le mode auto-test est terminé en coupant l'alimentation en tension de l'îlot. N'oubliez pas de remettre les réglages d'origine du MCM pour remettre le nœud de communication en fonctionnement régulier.

Avant de lancer le mode auto-test, coupez l'alimentation en air de l'îlot pour prévenir les mouvements accidentels. Débranchez les câbles de communication avant de lancer le mode auto-test.

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

6) Exemple de mapping des E/S

Exemple:

Réglages présumés

- Cartes Z-BoardsTM simples utilisées avec les électrodistributeurs simples
- Cartes Z-BoardsTM doubles utilisées avec les électrodistributeurs doubles

Configuration des E/S discrètes

No.	Type de		In	Out
de Pos	module	Code	Octets	
1	MCM	239-1384		
2	80 Sourcing (PNP)	239-1315	1	1
3	16O Sourcing (PNP)	239-1319	1	2
4	4I Sinking (NPN)	239-1304	1	0
5	8I Sinking (NPN)	239-1308	1	0

Configuration des E/S de l'îlot

Allocation sorties et mapping				
Sorties distr. = 12	Byte 0; Bits 0-7 Byte 1; Bits 0-3			
Sorties distr. allouées non-utilisées = 20	Byte 1; Bits 4-7 Octets 2 - 3; Bits 0- 7			
Sorties discrètes = 24	Octets 4,5 and 6; Bits 0-7			
Nb. total de sorties = 56				

Allocation entrées et mapping				
Entrées discrètes = 12	Byte 6; Bits 0-3, Byte 7; Bits 0-7			
Entrées allouées et réservées = 4	Byte 6; Bits 4-7			
Nb. total d'entrées = 16				

EMERSON.

Industrial Automation

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

Exemple de mapping des E/S - continuation

	Tableau des sorties							
Octet	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Bobine no. 8	Bobine no. 7	Bobine no. 6	Bobine no. 5	Bobine no. 4	Bobine no. 3	Bobine no. 2	Bobine no. 1
1	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Bobine no. 12	Bobine no. 11	Bobine no. 10	Bobine no. 9
2	Alloué et	Alloué et	Alloué et	Alloué et	Alloué et	Alloué et	Alloué et	Alloué et
	réservé	réservé	réservé	réservé	réservé	réservé	réservé	réservé
3	Alloué et	Alloué et	Alloué et	Alloué et	Alloué et	Alloué et	Alloué et	Alloué et
	réservé	réservé	réservé	réservé	réservé	réservé	réservé	réservé
4	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète
	7	6	5	4	3	2	1	0
5	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète
	7	6	5	4	3	2	1	0
6	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète
	15	14	13	12	11	10	9	8

	Tableau des entrées							
Octet	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Etat bobine 8	Etat bobine 7	Etat bobine 6	Etat bobine 5	Etat bobine 4	Etat bobine 3	Etat bobine 2	Etat bobine 1
1	Etat bobine 16	Etat bobine 15	Etat bobine 14	Etat bobine 13	Etat bobine 12	Etat bobine 11	Etat bobine 10	Etat bobine 9
2	Etat bobine 24	Etat bobine 23	Etat bobine 22	Etat bobine 21	Etat bobine 20	Etat bobine 19	Etat bobine 18	Etat bobine 17
3	Etat bobine 32	Etat bobine 31	Etat bobine 30	Etat bobine 29	Etat bobine 28	Etat bobine 27	Etat bobine 26	Etat bobine 25
4	Alloué et réservé	Alloué et réservé	Etat des sorties discrètes 4-7	Etat des sorties discrètes 0-3				
5	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Etat des sorties discrètes 12-15	Etat des sorties discrètes 8-11	Etat des sorties discrètes 4-7	Etat des sorties discrètes 0-3
6	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Entrée discrète 3	Entrée discrète 2	Entrée discrète 1	Entrée discrète 0
7	Entrée discrète 7	Entrée discrète 6	Entrée discrète 5	Entrée discrète 4	Entrée discrète 3	Entrée discrète 2	Entrée discrète 1	Entrée discrète 0

Cet exemple supporte les codes fonction Modbus TCP suivants : "Write Multiple Registers" (FC 16) (écriture de registres multiples) et "Read Multiple Registers" (FC 03) (lecture de registres multiples).

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

Exemple de mapping des E/S (Modbus TCP UNIQUEMENT – inversement de bits) continuation

Tableau des sorties								
BYTE	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
0	Bobine no. 8	Bobine no. 7	Bobine no. 6	Bobine no. 5	Bobine no. 4	Bobine no. 3	Bobine no. 2	Bobine no. 1
1	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Allocated & Reserved	Bobine no. 12	Bobine no. 11	Bobine no. 10	Bobine no. 9
2	Allocated &	Allocated &	Allocated &	Allocated &	Allocated &	Allocated &	Allocated &	Allocated &
	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
3	Allocated &	Allocated &	Allocated &	Allocated &	Allocated &	Allocated &	Allocated &	Allocated &
	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
4	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète
	7	6	5	4	3	2	1	0
5	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète
	7	6	5	4	3	2	1	0
6	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète	Sortie discrète
	15	14	13	12	11	10	9	8

	Tableau des entrées							
BYTE	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
0	Etat bobine 8	Etat bobine 7	Etat bobine 6	Etat bobine 5	Etat bobine 4	Etat bobine 3	Etat bobine 2	Etat bobine 1
1	Etat bobine 16	Etat bobine 15	Etat bobine 14	Etat bobine 13	Etat bobine 12	Etat bobine 11	Etat bobine 10	Etat bobine 9
2	Etat bobine 24	Etat bobine 23	Etat bobine 22	Etat bobine 21	Etat bobine 20	Etat bobine 19	Etat bobine 18	Etat bobine 17
3	Etat bobine 32	Etat bobine 31	Etat bobine 30	Etat bobine 29	Etat bobine 28	Etat bobine 27	Etat bobine 26	Etat bobine 25
4	Alloué et réservé	Alloué et réservé	Etat des sorties discrètes 4-7	Etat des sorties discrètes 0-3				
5	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Etat des sorties discrètes 12-15	Etat des sorties discrètes 8-11	Etat des sorties discrètes 4-7	Etat des sorties discrètes 0-3
6	Alloué et réservé	Alloué et réservé	Alloué et réservé	Alloué et réservé	Entrée discrète 3	Entrée discrète 2	Entrée discrète 1	Entrée discrète 0
7	Entrée discrète 7	Entrée discrète 6	Entrée discrète 5	Entrée discrète 4	Entrée discrète 3	Entrée discrète 2	Entrée discrète 1	Entrée discrète 0

Cet exemple supporte les codes fonction Modbus TCP suivants : "Write Coil" (FC05) (écriture de bobines) ou "Force Multiple Coils" (FC15) (forçage de bobines multiples) et "Read Coils" "(FC01) (lecture de bobines) ou "Read Input Discrete" (FC02) (lecture d'entrée discrète).

NUMATICE Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

7) Protection des sorties contre les courts-circuits (bits d'entrée d'état)

Les bits d'entrée d'état signalent l'intégrité de la charge pilotée par le pilote de sortie. Ils doivent être mappés sur le scanner comme partie de la valeur de la taille de l'entrée. Voir le tableau ci-dessous pour l'action du bit d'entrée d'état lors de l'occurrence d'une condition de défaut :

Type de sortie	<i>Etat de la sortie</i>	Condition de défaut	Bit d'état
Bilata da la babina		Sans défaut	0
d'électrodistributeur ou	ON	Défaut – court-circuit, surchauffe/surintensité de courant	1
Sinking (INPIN)	OFF	Sans défaut	0
Soffies discretes		Défaut – charge ouverte	1
Sourcing (PNP)		Sans défaut	0
Sorties discrètes	ON	Défaut – court-circuit, surchauffe/surintensité de courant	1

8) Mise à la terre

Tous les nœuds de communication de Numatics Inc. doivent être mis à la terre pendant la procédure d'installation. Les exigences relatives à la mise à la terre sont fournies dans les normes CEI 60204-1 ou EN 60204-1. Une étiquette d'avertissement "ATTENTION: RELIER L'EQUIPEMENT A UNE PRISE DE TERRE POUR ASSURER UNE BONNE MISE A LA TERRE" est également apposée sur le point de connexion de mise à la terre du châssis du boîtier du nœud de communication série G2-2. Les normes à suivre relatives à la mise à la terre sont également indiquées sur l'étiquette.

Une bonne mise à la terre peut réduire et prévenir bien des problèmes d'intermittence au niveau de la communication en réseau. Avant d'effectuer le raccordement de la mise à la terre sur un bâti de machine, s'assurer que le bâti lui-même est déjà mis à la terre. Une meilleure mise à la terre peut être réalisée avec des fils de section plus importante (jauge inférieur).

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

9) Affectation des broches du connecteur d'alimentation auxiliaire

No. de broche	Fonction	Description
1	+24VCC	Tension utilisée pour l'alimentation des sorties
1	(Distributeurs et sorties)	(Bobines d'ED et sorties discrètes)
2	Mise à la terre	Mise à la terre (mise à la terre de l'enveloppe)
3		0VCC commun, pour distributeurs, E/S, et alimentation du
5 0	ovec commun	nœud
4	+24VCC	Tension utilisée pour l'alimentation des entrées discrètes et
4	(Nœud et entrées)	l'électronique du nœud

Pin-Out

Aux. - MINI

La capacité maxi. de courant sur la broche 0VCC commun du connecteur d'alimentation auxiliaire est de 8A. La consommation combinée des distributeurs et sorties +24VCC et des broches du nœud et des entrées +24VCC ne peut pas dépasser 8A à tout moment.

La broche d'alimentation auxiliaire +24VCC du nœud et des entrées alimente l'électronique du nœud. Cette broche doit être alimentée en tension à tout moment pour permettre au nœud de communication de rester opérationnel.

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

10) Consommation en courant

Connexion d'alimentation auxiliaire (Standard)

No. de broche du connecteur d'alimentation auxiliaire	Description
1	Alimentation 24 VCC des distributeurs et sorties discrètes
4	Alimentation 24 VCC des entrées et de l'électronique du nœud

Cavalier d'alimentation de module(s) E/S discrète(s)

Tous les modules G2-2 E/S de Numatics Inc. disposent d'un cavalier de sélection de la source d'alimentation en tension. Ce cavalier détermine la broche qui servira à l'alimentation auxiliaire des modules.

Cette option permet à l'utilisateur de choisir comment chaque module spécifique sera alimenté sous les différentes condition (c.-à-d. arrêt d'urgence). Chaque module E/S peut être mis en place indépendamment, ce qui permet aux modules de sortie et/ou d'entrée de rester activés, si nécessaire. Puissance

Puissance

La charge de courant maximale du système est de <u>8A</u>. Veiller à ce que la consommation de la broche 0VCC commun (courant à travers toutes les broches +24 VCC combinées) ne dépasse pas 8A. La consommation des E/S discrètes dépend du dispositif ou des dispositifs raccordés. Il est très important de savoir les valeurs afin d'être sûr de rester dans la limite de 8A.

Les charges ne devraient pas consommer plus de 0,5A en courant à partir de chaque point de sortie discrète individuel. (Consulter l'usine pour les charges de courant plus élevées).

Connecteur d'alimentation auxiliaire	Tension	Tolérance	Courant	Puissance
+24VCC (distributeurs et sorties)				
Bobine d'ED 2005 (chaque)	24VCC	+10%/-15%	0,042 A	1,0 Watts
Bobine d'ED 2012 (chaque)	24VCC	+10%/-15%	0,105 A	2,5 Watts
Bobine d'ED 2035 (chaque)	24VCC	+10%/-15%	0,105 A	2,5 Watts
Bobine d'ED ISO - SPA (chaque)	24VCC	+10%/-15%	0,160 A	4,0 Watts
Sortie discrète	24VCC	-	0,5 A maxi.	12 Watts maxi.
LEDs d'état des E/S discrètes (chaque)	24VCC	-	0,015 A	0,36 Watts
+24VCC (nœud et entrées)				
Nœud	24VCC	+/- 10%	0,040 A	0,96 Watts
Module E/S discrète (chaque)	24VCC	-	0,006 A	0,14 Watts
LEDs d'état des E/S discrètes (chaque)	24VCC	-	0,015 A	0,36 Watts

La consommation en courant de chaque point E/S discrète dépend de la consommation spécifique des dispositifs capteurs d'entrée et des charges de sortie. Veuillez consulter l'usine pour les courants de sortie supérieurs à 0,5A.

Fusibles externes recommandés:

Les fusible externes devrait être choisis en fonction de la configuration physique de l'îlot. Voir le tableau de dimensionnement des fusibles sur la page suivante.

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

11) Tableau consommation en courant et dimensionnement des fusibles externes

Consommation en courant – Broche du connecteur d'alimentation auxiliaire de	s distri	buteurs et sorties
Description		<u>Courant</u>
Nombre de bobines d'électrodistributeurs activées simultanément		
X 0,105 A (séries 2012 et 2035)	=	A
X 0,042 A (série 2005)	=	A
		+
Courant de charge total consommé par les sorties discrètes activées		Α
simultanément,	=	+
Courant de charge total consommé par les dispositifs capteurs à partir de la		
source des entrées discrètes,	=	Α
cavalier d'alimentation des entrées discrètes en position "SP" (défaut usine).		
Total:		A
Compensation de surtension:	Х	1.25
Valeur de fusible externe +24 VCC (distributeurs et sorties) recommandée:		A
Consommation en courant – Broche du connecteur d'alimentation auxiliaire du	næud	et des entrées
\mathbf{N} \cdot \cdot		
Description		<u>Courant</u>
<u>Description</u> Consommation du nœud de communication	=	<u>Courant</u> 0,040 A
<i>Description</i> Consommation du nœud de communication	=	<u>Courant</u> 0,040 A +
<i>Description</i> Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément.	=	<u>Courant</u> 0,040 A + A
Description Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine).	=	<u>Courant</u> 0,040 A + A +
Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine). Courant de charge total consommé par les dispositifs capteurs à partir de la	=	<u>Courant</u> 0,040 A + A +
Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine). Courant de charge total consommé par les dispositifs capteurs à partir de la source des entrées discrètes,	=	<u>Courant</u> 0,040 A + A + A
Description Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine). Courant de charge total consommé par les dispositifs capteurs à partir de la source des entrées discrètes, cavalier d'alimentation des entrées discrètes en position "UP" (défaut usine).	=	<u>Courant</u> 0,040 A + A + A +
Description Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine). Courant de charge total consommé par les dispositifs capteurs à partir de la source des entrées discrètes, cavalier d'alimentation des entrées discrètes en position "UP" (défaut usine). Nombre de modules E/S installés X 0,006 A	= = =	<u>Courant</u> 0,040 A + A + A +
Description Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine). Courant de charge total consommé par les dispositifs capteurs à partir de la source des entrées discrètes, cavalier d'alimentation des entrées discrètes en position "UP" (défaut usine). Nombre de modules E/S installés X 0,006 A	= = =	<u>Courant</u> 0,040 A + A + A + A + A +
Description Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine). Courant de charge total consommé par les dispositifs capteurs à partir de la source des entrées discrètes, cavalier d'alimentation des entrées discrètes en position "UP" (défaut usine). Nombre de modules E/S installés X 0,006 A Nombre de LEDs d'état des E/S discrètes activées simultanément X 0,015	= = =	<u>Courant</u> 0,040 A + A + A + A + A + A +
Description Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine). Courant de charge total consommé par les dispositifs capteurs à partir de la source des entrées discrètes, cavalier d'alimentation des entrées discrètes en position "UP" (défaut usine). Nombre de modules E/S installés X 0,006 A Nombre de LEDs d'état des E/S discrètes activées simultanément X 0,015 A	= = =	<u>Courant</u> 0,040 A + A + A + A + A A
Description Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine). Courant de charge total consommé par les dispositifs capteurs à partir de la source des entrées discrètes, cavalier d'alimentation des entrées discrètes en position "UP" (défaut usine). Nombre de modules E/S installés X 0,006 A Nombre de LEDs d'état des E/S discrètes activées simultanément X 0,015 A	= = =	<u>Courant</u> 0,040 A + A + A + A + A + A A
Description Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine). Courant de charge total consommé par les dispositifs capteurs à partir de la source des entrées discrètes, cavalier d'alimentation des entrées discrètes en position "UP" (défaut usine). Nombre de modules E/S installés X 0,006 A Nombre de LEDs d'état des E/S discrètes activées simultanément X 0,015 A Total: Compensation de surtension:	= = = =	<u>Courant</u> 0,040 A + A + A + A + A + A 1.25
Description Consommation du nœud de communication Courant de charge total consommé par les sorties discrètes activées simultanément, cavalier d'alimentation des sorties discrètes en position "UP" (défaut usine). Courant de charge total consommé par les dispositifs capteurs à partir de la source des entrées discrètes, cavalier d'alimentation des entrées discrètes en position "UP" (défaut usine). Nombre de modules E/S installés X 0,006 A Nombre de LEDs d'état des E/S discrètes activées simultanément X 0,015 A Total: Compensation de surtension: Valeur de fusible externe +24 VCC (nœud et entrées) recommandée:	= = = X	

NOTE!

La configuration standard du cavalier d'alimentation sur tous les modules de sortie est "SP".

La configuration standard du cavalier d'alimentation sur tous les modules d'entrée est "UP".

A tout moment, la consommation en courant <u>combinée</u> de la broche +24VCC (distributeurs et sorties) <u>et</u> de la broche +24VCC (nœud et entrées) ne peut pas dépasser 8A. De ce fait, la valeur combinée des fusibles externes des deux broches +24VCC ne doit pas dépasser 8A.

Les fusibles internes sont installés pour assurer la protection contre les risques d'incendie causés par un défaut majeur des composants internes. Les fusibles externes sont recommandés pour assurer la protection contre les pannes de courant, surintensités ...

NUMATIC5 Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

12) Fonction des voyants LED

A la mise sous tension, les voyants LED indiquent l'état de l'unité. Le module d'alimentation du nœud Ethernet/IPTM et Modbus TCP série G2-2 dispose de quatre voyants LED : deux pour l'intégrité des fusibles internes, deux pour l'état de l'alimentation auxiliaire. Le module de communication dispose également de quatre voyants LED d'état décrits ci-

Module de communication

<i>Nom du voyant LED</i>	Couleur	Etat	Description
	Off	OFF	Pas d'alimentation en tension du module.
	Vort	ON	L'appareil est en état opérationnel. Le module fonctionne correctement.
MOD. STAT.	ven	Clignotant	Standby - Le module n'est pas encore configuré.
(état du module)	Rouge	ON	Défaut majeur - une erreur interne majeure a été détectée.
	Rouge	Clignotant	Défaut mineur - un défaut mineur recouvrable a été détecté.
	Vert Rouge	Clignotant	Auto-test. Ce module effectue un auto-test de mise sous tension.
Off		OFF	L'adresse IP n'a pas été assignée au nœud. Ou la tension n'est pas appliquée à l'appareil.
		ON	Connecté - Le module a établi une connexion EtherNet/IP.
	Vert	Clignotant	Pas de connexion. Pas de connexions EtherNet/IP établies avec le module.
NET. STAT. (état du réseau)	Pougo	ON	Doubler l'adresse IP. Le module a détecté que son adresse IP est déjà utilisé autre part sur le réseau.
	Kouge	Clignotant	Le temps de connexion EtherNet/IP est dépassé. Une ou plusieurs connexions qui ciblent ce module ont dépassé leur temps de connexion.
	Vert Rou ge Clignotant		Auto-test. Ce module effectue un auto-test de mise sous tension.
LINK	Vort OFF		Pas de connexion EtherNet détectée.
(liaison)	Vert	ON	Le module est connecté à un réseau EtherNet.
ACTIVE	Vert	Clignotant	Le voyant LED clignote à chaque réception ou transmission d'un paquet.

Module d'alimentation

Nom du voyant LED	Couleur	Etat	Description
	Pourse	OFF	Fusible interne Fl est bon (valide seulement dans le cas où la broche du connecteur d'alimentation auxiliaire $+24V_{VLV/OUT}$ est alimentée).
FUSE I	Kouge	ON	Fusible interne <i>F1</i> est ouvert; pas d'alimentation interne des distributeurs ni des sorties. La communication N'EST PAS affectée.
+24V VLV/OUT	-24V VLV/OUT Vert		Pas de courant CC présent sur la broche $+24V_{VLV/OUT}$ du connecteur d'alimentation auxiliaire.
		ON	Courant CC appliqué à la broche +24V _{VLV/OUT} du connecteur d'alimentation auxiliaire.
ELISE 2	EUSE 2 Pours		Fusible interne $F2$ est bon (valide seulement dans le cas où la broche du connecteur d'alimentation auxiliaire $+24V_{NODE/IN}$ est alimentée).
FUSE 2	Kouge	ON	Fusible interne $F2$ est ouvert; pas d'alimentation interne de l'électronique du nœud ni des entrées. Le nœud de communication ne fonctionne pas.
+24V NODE/IN	Vert	OFF	Pas de courant CC présent sur la broche $+24V_{VLV/OUT}$ du connecteur d'alimentation auxiliaire.
		ON	Courant CC appliqué à la broche $+24V_{NODE/IN}$ du connecteur d'alimentation auxiliaire.

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

13) Codes fonction Modbus/TCP

Ce module de communication supporte le protocole Modbus/TCP basé sur la version 1.0 de la spécification. Ce module de communication peut traiter jusqu'à 8 connexions simultanées.

Code fonction	Nom de la fonction	Class e	Zone concernée
01	Lecture des bobines	1	IN / OUT
02	Lecture d'entrée discrète	1	IN / OUT
03	Lecture de registres multiples	0	IN / OUT
04	Lecture de registres d'entrée	1	IN / OUT
05	Ecriture des bobines	1	OUT
06	Ecriture de registre simple	1	OUT
07	Lecture d'état d'exception	1	OUT
15	Forçage de bobines multiples	2	OUT
16	Ecriture de registres multiples	0	
22	Masquage de multiples registres	2	OUT
23	Lecture/écriture de registres	2	IN & OUT

Commandes supportées :

Adressage Modbus/TCP :

Zone mémoire Modbus (décimal)	Туре	Code fonction (FC) applicable	Zone mémoire du nœud Numatics (décimal)	<i>Taille totale des E/S</i>	<i>Méthode d'adressage</i>	Inversement de bit
0 - 9999	Sortie	05	16384 - 16704	320	Bit	Oui
		15	16384 - 16424	40	Byte	Oui
		16	1024 - 1044	20	Word	Non
10000 - 19999		01	0 - 320	320	Bit	Oui
	Entrée	02	0 - 320	320	Bit	Oui
		03	0 - 20	20	Word	Non

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

14) Configuration de l'adresse IP

L'adresse IP du nœud EtherNet G2-2 de Numatics peut être configurée par plusieurs méthodes : DHCP /BOOTP Configuration manuelle par DIP switchs

Configuration de page web intégrée Commande ARP/PING

A.) DHCP /BOOTP

Le nœud est configuré en usine avec l'option DHCP/BOOTP activée. Ceci permet à un serveur DHCP de régler automatiquement l'adresse IP sur le nœud lors de la connexion au réseau ou à un serveur BOOTP d'établir la communication avec le nœud et de régler l'adresse IP. Ces méthodes d'adressage nécessitent que la MAC ADDRESS unique du nœud soit connue. La MAC ADDRESS est repérée sur l'étiquette qui se trouve sur le couvercle du nœud (voir ci-dessus). Elle sera différente pour chaque nœud. Quand DHCP/BOOP est activé est qu'un serveur DHCP est trouver, l'adresse IP, le masque Subnet ainsi que la Passerelle sont automatiquement configurés par le serveur DHCP.

55	BOOTP/DHCP Server	2.3			
File	e Tools Help Request History Clear History Add to	Relation List			
	(httmintsec) Type 10:07:41 DHCP 10:07:41 DHCP	Ethernet Address (MAC) 00:11:25:45:15:20 00:11:25:45:15:20	IP Address	Hostname	
F	Relation List New Delete Enable Ethernet Address (MAC)	BOOTP Enable DHCP Di	sable BOOTP/DHCP	Description	
[0	itatus Jnable to service DHCP req	uest from 00:11:25:45:15:2D.			Entries 0 of 256

Le réglage DHCP/BOOT peut être activé ou désactivé via les serveur web de nœud intégré. Loggez-vous tout simplement sur le nœud avec n'importe quel navigateur web et allez sur la page de configuration.

NUMATIC5 Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

B.) DIP switchs de configuration manuelle

Les DIP switchs de configuration manuelle permettent de configurer facilement l'adresse IP du nœud. Les switchs représentent la valeur binaire du dernier octets de l'adresse IP. Si tous les DIP switchs sont positionnés sur OFF, la configuration manuelle est désactivée, ce qui nécessite l'utilisation d'autre moyens de configuration de l'adresse IP. Les réglages de configuration des DIP switchs ne prennent effet qu'au prochain cycle de mise sous tension (mise hors tension et mise sous tension).

Adresse IP:	192.168.0. <mark>X</mark>
Masque subnet	255.255.255.0
Adresse de passerelle:	0.0.0.0
	(passerelle non configurée)

2 ⁷ =128 SW-8	2 ⁶ =64 SW-7	2 ⁵ =32 SW-6	24=16 SW-5	2 ³ =8 SW-4	2 ² =4 SW-3	21=2 SW-2	2°=1 SW-1	Valeur d'octet (décimal)
OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	*0
OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	1
OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	2
OFF	OFF	OFF	OFF	OFF	OFF	ON	ON	3
OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	4
OFF	ON	ON	ON	ON	OFF	OFF	OFF	120
ON	ON	ON	ON	ON	ON	OFF	ON	253
ON	ON	ON	ON	ON	ON	ON	OFF	254
ON	ON	ON	ON	ON	ON	ON	ON	Non valide

X = Réglages DIP switchs comme définis dans le tableau ci-dessous

*Non valide pour le 4^e octet

Série 2-2 - EtherNet/IPTM et Modbus TCP

C.) Configuration de la page web

Le nœud EtherNet G2-2 de Numatics dispose d'un serveur web embarqué. Ce serveur peut être accédé via tout programme standard de navigateur web. Sie l'adresse IP du nœud est connue, la page de configuration du nœud "Node Configuration" peut être appelée pour mettre à jour les paramètres de configuration. Si l'adresse IP do nœud n'est pas connue, elle peut être réglée en utilisant l'une des méthodes décrites ci-dessus. Veuillez noter que l'ordinateur sur lequel le navigateur web est installé doit être correctement configuré pour fonctionner avec les plages de réseau IP et les réglages Subnet appropriés qui correspondent au nœud EtherNet G2-2. Consultez le personnel approprié avant de procéder à toute modification des réglages du réseau de votre ordinateur et notez toujours les réglages actuels afin de pouvoir les restituer ultérieurement.

Veuillez trouver ci-dessous une représentation de la page de configuration du nœud qui est sauvegardée dans le nœud EtherNet.

Les sélections Adresse IP, Masque subnet, Adresse de passerelle, Adresse du serveur SMTP et DHCP/BOOTP activé peuvent toutes être configurées sur cette page. Les paramètres sont programmés dans la mémoire FLASH non-volatile du nœud lorsque le bouton de mise à jour de la configuration "Update Config." est cliqué.

Les modifications aux réglages sur la page de configuration du nœud "Node Configuration" ne prennent effet qu'au prochain cycle de mise sous tension (mise hors tension et mise sous tension).

Numatics Incorporated				
EtherNet 10/100 N Page de configur	EtherNet 10/100 Mbit/s Série G2-2 Page de configuration du nœud			
Adresse IP :	192.168.3.120			
Masque subnet :	255.255.255.0			
Adresse de passerelle :	0.0.0.0.			
Serveur SMTP :	0.0.0.0.			
DHCP/BOOTP activé :				
UPDATE CONFIG (Mise à jour)				

Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

D.) Commande ARP/PING

ARP (protocole de résolution dadresse), PING et DOS sont des commandes qui peuvent être utilisées pour régler l'adresse IP.

Pour ce faire, l'ordinateur doit être équipé d'une carte réseau Ethernet (NIC). L'adresse IP est sauvegardée dans la mémoire FLASH non-volatile du nœud après son réglage. Aucun cyclage de la tension n'est nécessaire. Suivez les étapes suivants pour configurer l'adresse IP avec les commandes ARP/PING.

1) Utiliser la commande ARP-s pour configurer l'adresse IP à partir d'une fenêtre DOS.

arp -s <adresse IP> <adresse MAC>

Où: <adresse IP> est l'adresse IP auquel le nœud est à régler. <adresse MAC> est l'adresse MAC unique du noeud auquel l'adresse IP est à régler (voir l'étiquette sur le couvercle).

Exemple : arp -s 192.168.6.35 00-15-24-00-00-38

2) Utiliser la commande PING pour envoyer l'adresse IP au nœud.

ping <adresse IP>

Où: <adresse IP> est l'adresse IP précédemment utilisée dans la commande "arp -s".

Exemple : ping 192.168.6.35

3) Utiliser la commande ARP-d pour enlever le renseignement statique du tableau PC ARP.

arp –d

Exemple : arp -d

La commande ARP configure automatiquement le masque subnet à 255.255.255.0 (c.à.d. les premiers 3 octets de l'adresse IP seront les mêmes que ceux de l'ordinateur qui exécute la commande).

Lors de l'utilisation des commandes ARP et PING, l'option DHCP/BOOP est désactivée.

Les paramètres réglés dans le nœud sont programmés dans le mémoire FLASH non-volatile. Ils NE seront PAS perdus suite à une déconnexion de la tension.

NUMATICS Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

15) Configuration EtherNet/IPTM avec RSLOGIX 5000

A la mise en service de votre nœud EtherNet/IPTM, des valeurs spécifiques relatives à "Input Size" *(taille de sortie)* et "Configuration" doivent être renseignées dans la colonne "Assembly Instance" *(instance d'assemblage)* de la section "Connection Parameters" (paramètres de connexion). Les valeurs "Size" *(taille)* sont déterminées par la configuration physique actuelle de l'îlot (c.à.d. par le nombre et le type de modules E/S installés sur l'îlot). Il s'agit par les valeurs de taille d'une valeur minimum; les valeurs supérieures peuvent être utilisés si une expansion future des E/S de l'îlot est requise. Ci-dessous une capture d'écran d'exemple prise du logiciel de programmation RSLogix 5000 d'Allen Bradley`montrant où renseigner les valeurs appropriées pour IP Address *(adresse IP)*, Assembly Instance *(instance d'assemblage)*, Size *(taille)* et Configuration.

Caractéristiques du module :

Format de communication :

Description	Data	
Format de communication	"Données – SINT"	

Paramètres de connexion :

Description	Valeurs d'instance d'assemblage	Taille (8 Bits=1 Octet)
Entrée	100 (décimal) ou 64 (hexadécimal)	Valeur des octets totales d'entrée (en octets) de la configuration (y inclus les bits d'entrée d'état). Il s'agit d'une valeur minimum; des valeurs supérieures peuvent être spécifiées aux fins d'une expansion future.
Sortie	150 (décimal) ou 96 (hexadécimal)	Valeur des octets totales de sortie (en octets) de la configuration de l'1lot. Il s'agit d'une valeur minimum; des valeurs supérieures peuvent être spécifiées aux fins d'une expansion future.
Configuration	1 (décimal) ou 1 (hexadécimal)	0

NUMATIC5 Guide de Démarrage Rapide Série 2-2 - EtherNet/IPTM et Modbus TCP

16) Réglages par défaut programmés en usine

Sauf demande contraire, tous les îlots standard Ethernet série G2-2 sont fournis d'usine avec les réglages par défaut . Ci-dessous une liste des réglages par défaut.

Description	Réglages par défaut
Adresse IP	DHCP/ BOOTP activé (192.168.3.120 dans FLASH)
Adresse MAC	Code alphanumérique unique pour chaque nœud (00-30-11-XX-XX-XX). Inscrit sur le couvercle du nœud EtherNet/IP(TM).
	(Ne peut pas être configurée par l'utilisateur).
Taux Baud	10/100 Mbit par seconde (Autobaud)
DHCP /BOOTP	Activé
Cavalier d'alimentation du module d'entrée	PU (Capteur d'entrée alimenté par la broche +24VCC du nœud et des entrées du connecteur d'alimentation auxiliaire)
Cavalier d'alimentation du module de sortie	SP (Module de sortie alimenté par la broche +24VCC des distributeurs et sorties du connecteur d'alimentation auxiliaire)
Octets de sortie de la partie composants pneumatiques	4 octets (32 sorties de bobines d'ED allouées)
Partie électronique – octets E/S	Auto-configuration en fonction des modules E/S installés.

17) Support technique

Pour le support technique, contactez votre distributeur Numatics local. Pour de plus amples informations, veuillez contacter Numatics Inc. sous (248) 887-4111 et demandez le Support Technique.

Consultez le vendeur du produit approprié pour toute question relative à la mise en place du réseau, la programmation de l'API, le séquencement, les fonctions liées au logiciel ...

Les informations sur les fichiers des périphériques, les manuels techniques, les distributeurs locaux, ainsi que d'autres informations sur les produits et le support Numatics Inc. se trouvent sur le site web Numatics Inc. sous <u>www.numatics.com</u>

Pour un support général ou plus d'informations sur le protocole Ethernet Industriel, veuillez accéder les sites appropriés suivants :

ODVA - www.odva.org

EtherNet/IPTM est une marque déposée utilisée sous licence par ODVA.

