


## Seated valves (PN 16)

- VRB 2 2-way valve, internal and external thread
- VRB 3 3-way valve, internal and external thread

Description



VRB valves provide a quality, cost effective solution for most water and chilled applications.

VRB 3 int. thread

VRB 3 ext. thread

The valves are designed to be combined with following actuators: •With AMV(E) 335, AMV(E) 435 or AMV(E) 438 SU

actuators. • With AMV(E) 25, 25 SU/SD, 35 or AMV 323/423/523 actuators (with adapter **065Z0311**).

Combinations of actuators is evident under section "Dimension".

#### Features:

- Bubble tight design
- Snap mechanical connection together with AMV(E) 335, AMV(E) 435
- Dedicated 2 and 3-port valv
- Suitable for diverting applications (3-port)

## Main data:

- DN 15-50
- k<sub>vs</sub> 0,63-40 m<sup>3</sup>/h
- PN 16
  - Temperature:
  - Circulation water / glycolic water up to 50 %: 2 (-10\*) ... 130 °C \* At temperatures from -10 °C up to +2 °C use stem
  - \* At temperatures from -10 °C up to +2 °C use stem heater
  - Connections:
  - External thread - Internal thread
  - Compliance with Pressure Equipment Directive 97/23/EC

#### Ordering

Example: 3-way valve; DN 15;  $k_{vs}$  1,6; PN 16;  $T_{max}$  130 °C; ext. thread

- 1× VRB 3 DN 15 valve
  Code No.: 065Z0153
- Option:
- 3× Tailpieces
- Code No.: 065Z0291

#### 2&3-way valves VRB (external thread)

|    | k <sub>vs</sub> | Code No. |          |  |  |
|----|-----------------|----------|----------|--|--|
| DN | (m³/h)          | VRB 2    | VRB 3    |  |  |
|    | 0,63            | 065Z0171 | 065Z0151 |  |  |
| 15 | 1,0             | 065Z0172 | 065Z0152 |  |  |
|    | 1,6             | 065Z0173 | 065Z0153 |  |  |
|    | 2,5             | 065Z0174 | 065Z0154 |  |  |
|    | 4,0             | 065Z0175 | 065Z0155 |  |  |
| 20 | 6,3             | 065Z0176 | 065Z0156 |  |  |
| 25 | 10              | 065Z0177 | 065Z0157 |  |  |
| 32 | 16              | 065Z0178 | 065Z0158 |  |  |
| 40 | 25              | 065Z0179 | 065Z0159 |  |  |
| 50 | 40              | 065Z0180 | 065Z0160 |  |  |

#### 2 & 3-way valves VRB (internal thread)

| DN | k <sub>vs</sub> | Code No. |          |  |  |  |
|----|-----------------|----------|----------|--|--|--|
| DN | (m³/h)          | VRB 2    | VRB 3    |  |  |  |
|    | 0,63            | 065Z0231 | 065Z0211 |  |  |  |
|    | 1,0             | 065Z0232 | 065Z0212 |  |  |  |
| 15 | 1,6             | 065Z0233 | 065Z0213 |  |  |  |
|    | 2,5             | 065Z0234 | 065Z0214 |  |  |  |
|    | 4,0             | 065Z0235 | 065Z0215 |  |  |  |
| 20 | 6,3             | 065Z0236 | 065Z0216 |  |  |  |
| 25 | 10              | 065Z0237 | 065Z0217 |  |  |  |
| 32 | 16              | 065Z0238 | 065Z0218 |  |  |  |
| 40 | 25              | 065Z0239 | 065Z0219 |  |  |  |
| 50 | 40              | 065Z0240 | 065Z0220 |  |  |  |

Danfoss

## Seated valves VRB 2, VRB 3

## Ordering (continued)

## Accessories - Tailpieces

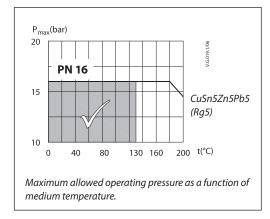
| Туре                    |         | DN | Code No. |
|-------------------------|---------|----|----------|
|                         | Rp ½    | 15 | 065Z0291 |
|                         | Rp ¾    | 20 | 065Z0292 |
| Teileisee 1)            | Rp 1    | 25 | 065Z0293 |
| Tailpiece <sup>1)</sup> | Rp 1¼   | 32 | 065Z0294 |
|                         | Rp 11/2 | 40 | 065Z0295 |
|                         | Rp 2    | 50 | 065Z0296 |

<sup>1)</sup> 1 tailpiece internal thread for VRB ext. thread (Ms - CuZn39Pb3)

## Service kits

| Туре         | DN    | Code No. |  |  |
|--------------|-------|----------|--|--|
|              | 15    | 065Z0321 |  |  |
|              | 20    | 065Z0322 |  |  |
| Stuffing box | 25    | 065Z0323 |  |  |
|              | 32    | 065Z0324 |  |  |
|              | 40/50 | 065Z0325 |  |  |

## Accessories - Adapter & stem heater

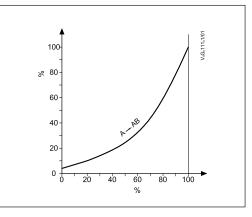

| Туре        | for actuators               | Code No. |  |  |
|-------------|-----------------------------|----------|--|--|
| Adapter     | AMV(E)<br>25/35/323/423/523 | 065Z0311 |  |  |
| Stem heater | AMV(E) 335/435              | 065Z0315 |  |  |

#### **Technical data**

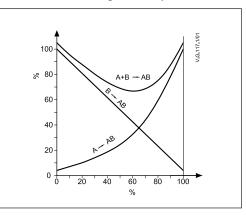
| Nominal diameter       | DN   |                                               |     | 15  |     |     | 20  | 25 | 32 | 40 | 50 |  |
|------------------------|------|-----------------------------------------------|-----|-----|-----|-----|-----|----|----|----|----|--|
| k <sub>vs</sub> value  | m³/h | 0,63                                          | 1,0 | 1,6 | 2,5 | 4,0 | 6,3 | 10 | 16 | 25 | 40 |  |
| Stroke                 | mm   | 10                                            |     |     |     |     |     |    | 15 |    |    |  |
| Control range          |      | 30:1 50:1 100:1                               |     |     |     |     |     |    |    |    |    |  |
| Control characteristic |      | LOG: port A-AB; LIN: port B-AB                |     |     |     |     |     |    |    |    |    |  |
| Cavitation factor z    |      | ≥ 0,4                                         |     |     |     |     |     |    |    |    |    |  |
| Lashawa                |      | A - AB bubble tight design                    |     |     |     |     |     |    |    |    |    |  |
| Leakage                |      | $B - AB \le 1,0 \% \text{ of } k_{vs}$        |     |     |     |     |     |    |    |    |    |  |
| Nominal pressure       | PN   | 16                                            |     |     |     |     |     |    |    |    |    |  |
|                        |      | Mixing: 4                                     |     |     |     |     |     |    |    |    |    |  |
| Max. closing pressure  | bar  | Diverting: 1                                  |     |     |     |     |     |    |    |    |    |  |
| Medium                 |      | Circulation water / glycolic water up to 50 % |     |     |     |     |     |    |    |    |    |  |
| Medium pH              |      | Min. 7, Max. 10                               |     |     |     |     |     |    |    |    |    |  |
| Medium temperature     | °C   | 2 (-10 1) 130                                 |     |     |     |     |     |    |    |    |    |  |
| Connections            |      | Int. and ext. thread                          |     |     |     |     |     |    |    |    |    |  |
| Materials              |      |                                               |     |     |     |     |     |    |    |    |    |  |
| Valve body             |      | Red bronze CuSn5ZN5Pb5 (Rg5)                  |     |     |     |     |     |    |    |    |    |  |
| Valve stem             |      | Stainless steel                               |     |     |     |     |     |    |    |    |    |  |
| Valve cone             |      | Brass                                         |     |     |     |     |     |    |    |    |    |  |
| Stuffing box sealing   |      | EPDM                                          |     |     |     |     |     |    |    |    |    |  |

<sup>1)</sup> At temperatures from -10 up to +2 °C use stem heater

# Pressure temperature diagram







#### Seated valves VRB 2, VRB 3

## Valve characteristics

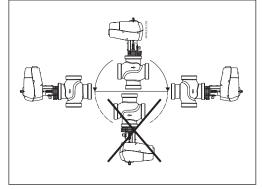
Valve characteristics log (2-way)

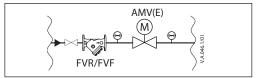






## Installation


#### Valve mounting


Before valve mounting the pipes have to be cleaned and free from abrasion. Valve must be mounted according to flow direction as indicated on valve body, except by diverting, where valve can be mounted oposite to the flow direction (flow oposite to indication on the valve body). Mechanical loads of the valve body caused by the pipes are not allowed. Valve should be free of vibrations as well.

Installation of the valve with the actuator is allowed in horizontal position or upwards. Installation downwards is not allowed.

#### Note:

Install a strainer upstream of the valve (e.g. Danfoss FVR/FVF)





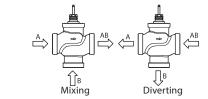



Fig. 1: Mixing or diverting connection

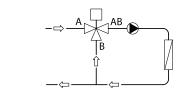



Fig. 2: Mixing valve used in mixing application

#### Mixing or diverting connection

3-way valve can be used either as mixing or diverting valve (fig.1).

If 3-way valve is installed as mixing valve meaning that A and B ports are inlet ports, and AB port is outlet port it can be installed in mixing (fig.2) or diverting application (fig.3).

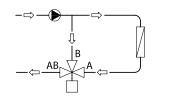



Fig. 3: Mixing valve used in diverting application

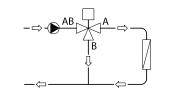
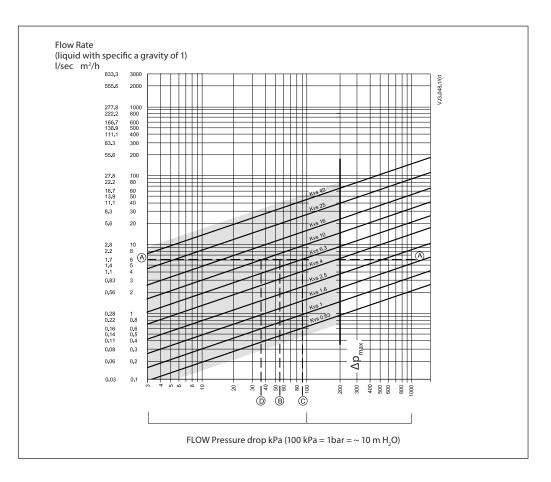



Fig. 4: Diverting valve used in diverting application

3-way valve can be also installed as diverting valve in diverting application (fig.4) meaning that AB port is inlet and A and B ports are outlets.

#### Note:

Maximal closing pressure for mixing and diverting installation are not the same. Please refer to values stated in Technical data section.


Danfoss

#### Seated valves VRB 2, VRB 3

Disposal

The valve must be dismantled and the elements sorted into various material groups before disposal.





#### Example

Design data: Flow rate: 6 m<sup>3</sup>/h System pressure drop: 55 kPa

Locate the horizontal line representing a flow rate of 6 m<sup>3</sup>/h (line A-A). The valve authority is given by the equation:

Valve authority, a = 
$$\frac{\Delta p_1}{\Delta p_1 + \Delta p_2}$$

Where:

- $\Delta p_1 = \text{pressure drop across the fully open}$ valve
- $\Delta p_2 = pressure drop across the rest of the circuit with a full open valve$

The ideal valve would give a pressure drop equal to the system pressure drop (i.e. an authority of 0,5):

$$if: \Delta p_1 = \Delta p_2$$
$$a = \frac{\Delta p_1}{2 \times \Delta p_1} = 0.5$$

In this example an authority of 0,5 would be given by a valve having a pressure drop of 55 kPa at that flow rate (point B). The intersection of line A–A with a vertical line drawn from B lies between two diagonal lines; this means that no ideally-sized valve is available. The intersection of line A–A with the diagonal lines gives the pressure drops stated by real, rather than ideal, valves. In this case, a valve with  $k_{vs}$  6,3 would give a pressure drop of 90,7 kPa (point C):

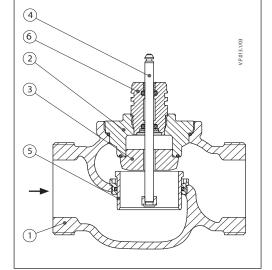
hance valve authority = 
$$\frac{90,7}{90,7+55} = 0,62$$

The second largest valve, with  $k_{vs}$  10, would give a pressure drop of 36 kPa (point D):

hence valve authority 
$$=$$
  $\frac{36}{36+55} = 0,395$ 

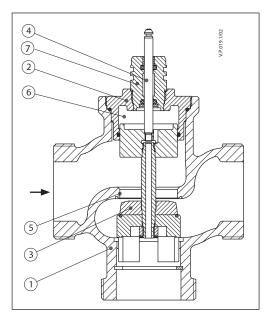
Generally, for a 3 port application, the smaller valve would be selected (resulting in a valve authority higher than 0,5 and therefore improved control). However, this will increase the total pressure and should be checked by the system designer for compatibility with available pump heads, etc. The ideal authority is 0,5 with a preferred range of between 0,4 and 0,7.




## Seated valves VRB 2, VRB 3

## Design

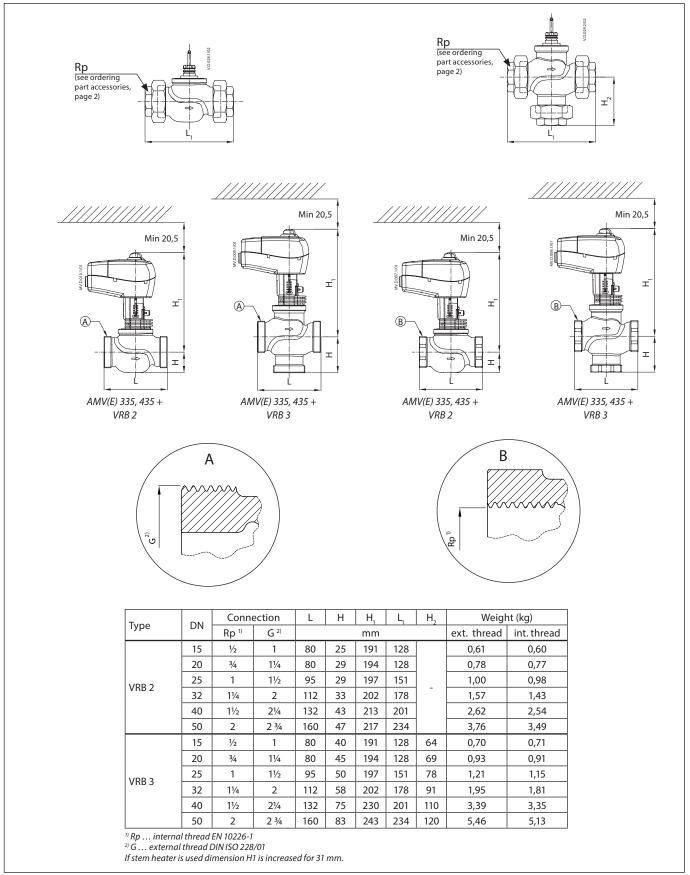
(Design variations are possible)


## VRB 2

- Valve body
  Valve insert
  Valve cone
- 4. Valve stem
- Valve stern
  Moving valve seat (pressure relieved)
  Stuffing box

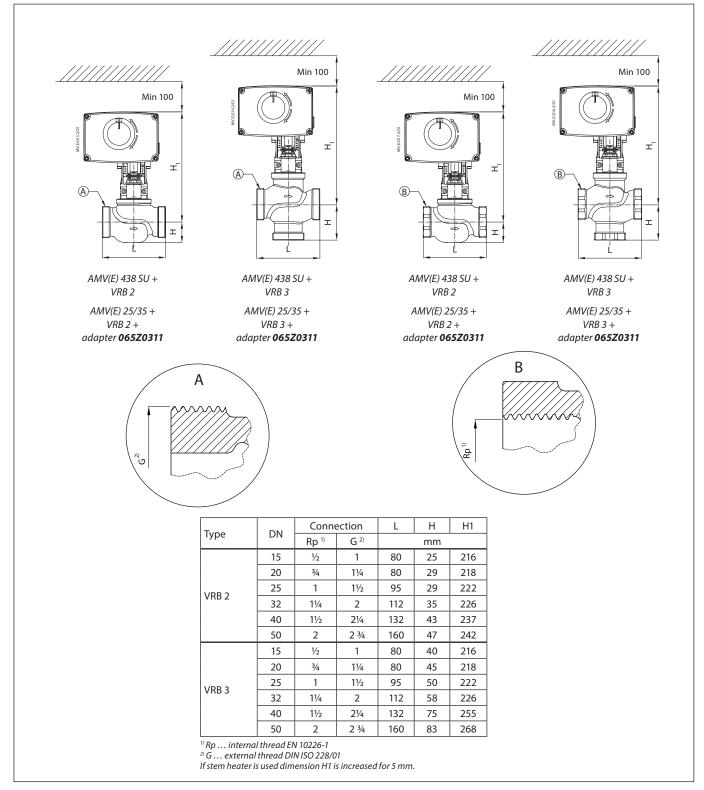


## VRB 3


- Valve body
  Valve insert
- 3. Valve cone
- 4. Valve stem
- 5. Valve seat6. Pressure relieve chamber
- 7. Stuffing box



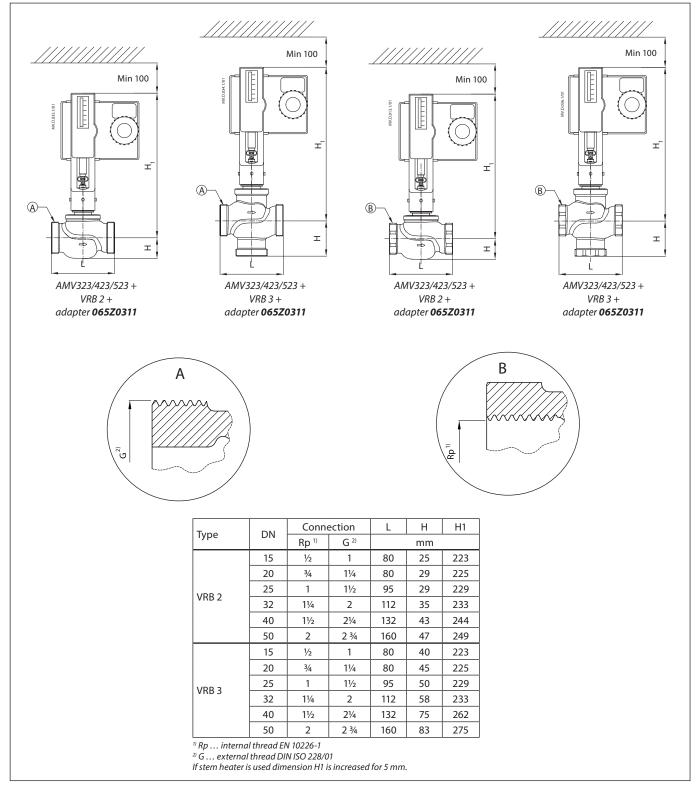



Seated valves VRB 2, VRB 3

## Dimensions






## **Dimensions** (continued)





Seated valves VRB 2, VRB 3

## **Dimensions** (continued)



Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.